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1 Let C denote the complex plane, H = {z ∈ C : im(z) > 0} denote the upper
half-plane, and D = {z ∈ C : |z| < 1} denote the unit disk.

(a) Give the definition of a compact H-hull A and its half-plane capacity hcap(A).

(b) Let A = (H ∩ D) ∪ ((0, 2i]). Compute hcap(A).

(c) State what it means for a family of compact H-hulls to satisfy the conformal Markov
property.

(d) Prove that if a family of compact H-hulls satisfies the conformal Markov property,
then the Loewner driving function U must be a non-negative multiple of a Brownian
motion.

(e) Consider the chordal Loewner equation with driving function Ut = a
√
t where a ∈ R

is a constant and let (At) be the associated family of compact H-hulls. Prove that
L = ∪tAt is a straight line from 0 to ∞. [You do not need to identify the angle of L.]
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(a) State (without proof) for which range of κ values SLEκ is:

(i) Simple,

(ii) Self-intersecting but not space-filling,

(iii) Space filling.

(b) Suppose that X is a Bessel process of dimension δ. Prove that X2−δ is a continuous
local martingale. Prove that if δ > 2 and X0 > 0 then inft>0Xt > 0 almost surely.

(c) Suppose that (gt) is the Loewner flow with driving function Ut =
√
κBt where B is a

standard Brownian motion. Show that (gt(x)−Ut)/
√
κ is a Bessel process and identify

its dimension. Prove that SLEκ is simple for the range of κ values identified in (i) of
part (a).

(d) Let γ be an SLEκ curve in H from 0 to ∞. For each r > 0, let σr = inf{t >

0 : Im(γ(t)) = r}. Explain why P[σr < ∞] does not depend on r. Deduce that
P[σr <∞] = 1 for every r > 0. [You may not assume the transience of SLEκ.]
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3 We assume throughout that D ⊆ C is a simply connected domain distinct from C

and ∅.

(a) Give the definitions of:

(i) the Dirichlet inner product,

(ii) the space H1
0 (D),

(iii) the Gaussian free field h on D.

(b) Let G(x, y) = − log |x − y| − Gx(y) where Gx(y) is the function which is harmonic
in D with boundary values y 7→ − log |x − y|. Explain how the L2 inner product
(h, φ) is defined for φ ∈ C∞

0 (D) and show that it is a mean-zero normal random
variable with variance

∫∫
φ(x)G(x, y)φ(y)dxdy. [You may assume without proof that

−2π∆−1φ(x) =
∫
G(x, y)φ(y)dy.]

(c) Suppose that φ is a conformal transformation D → D with φ(0) = z. Explain why
the map ψ : D → R given by

w 7→
{
log |φ(w)−φ(0)

w | for w 6= 0

log |φ′(0)| for w = 0

is harmonic in D. Deduce that

log |φ′(0)| = 1

2π

∫

∂D
log |φ(w) − φ(0)|dw

where dw denotes the Lebesgue measure on ∂D.

(d) Explain why Gz(y) is equal to −ψ(φ−1(y)) and use this to prove that Gz(z) =
− log |φ′(0)|.
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(a) State what it means for SLE6 to satisfy the locality property. State what it means for
SLE8/3 to satisfy the restriction property.

(b) Fix T > 0 and let D ⊆ H be a simply connected domain. Suppose that (At)t∈[0,T ] is
a non-decreasing family of compact H-hulls which are locally growing with A0 = 0,
hcap(At) = 2t for all t ∈ [0, T ], and AT ⊆ D. Let ψ : D → H be a conformal
transformation which is bounded on bounded sets. Show that the family of compact
H-hulls Ãt = ψ(At) for t ∈ [0, T ] is locally growing with Ã0 = ∅ and with

hcap(Ãt) =

∫ t

0
2(ψ′

s(Us))
2ds where ψt = g̃t ◦ ψ ◦ g−1

t for each t ∈ [0, T ]

and g̃t is the unique conformal transformation H \ Ãt → H with g̃t(z) − z → 0 as
z → ∞.

(c) Give the definition of a Brownian excursion B̂ in H from 0 to ∞. Suppose that
A is a compact H-hull with 0 /∈ ∂A. Prove that P[B̂([0,∞)) ∩ A = ∅] = ψ′

A(0)
where ψA : H \ A → H is the unique conformal transformation with ψA(0) = 0 and
ψA(z)/z → 1 as z → ∞. [You may use estimates for the maps gA provided you state
them clearly.]
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