MATHEMATICAL TRIPOS Part III

Monday, 11 June, 2018 $-9{:}00~\mathrm{am}$ to 11:00 am

PAPER 203

SCHRAMM-LOEWNER EVOLUTIONS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1 Let \mathbb{C} denote the complex plane, $\mathbb{H} = \{z \in \mathbb{C} : im(z) > 0\}$ denote the upper half-plane, and $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ denote the unit disk.

- (a) Give the definition of a compact \mathbb{H} -hull A and its half-plane capacity hcap(A).
- (b) Let $A = (\mathbb{H} \cap \overline{\mathbb{D}}) \cup ((0, 2i])$. Compute hcap(A).
- (c) State what it means for a family of compact H-hulls to satisfy the conformal Markov property.
- (d) Prove that if a family of compact \mathbb{H} -hulls satisfies the conformal Markov property, then the Loewner driving function U must be a non-negative multiple of a Brownian motion.
- (e) Consider the chordal Loewner equation with driving function $U_t = a\sqrt{t}$ where $a \in \mathbb{R}$ is a constant and let (A_t) be the associated family of compact \mathbb{H} -hulls. Prove that $L = \bigcup_t A_t$ is a straight line from 0 to ∞ . [You do not need to identify the angle of L.]

$\mathbf{2}$

- (a) State (without proof) for which range of κ values SLE_{κ} is:
 - (i) Simple,
 - (ii) Self-intersecting but not space-filling,
 - (iii) Space filling.
- (b) Suppose that X is a Bessel process of dimension δ . Prove that $X^{2-\delta}$ is a continuous local martingale. Prove that if $\delta > 2$ and $X_0 > 0$ then $\inf_{t \ge 0} X_t > 0$ almost surely.
- (c) Suppose that (g_t) is the Loewner flow with driving function $U_t = \sqrt{\kappa}B_t$ where B is a standard Brownian motion. Show that $(g_t(x) U_t)/\sqrt{\kappa}$ is a Bessel process and identify its dimension. Prove that SLE_{κ} is simple for the range of κ values identified in (i) of part (a).
- (d) Let γ be an SLE_{κ} curve in \mathbb{H} from 0 to ∞ . For each r > 0, let $\sigma_r = \inf\{t \ge 0 : \operatorname{Im}(\gamma(t)) = r\}$. Explain why $\mathbb{P}[\sigma_r < \infty]$ does not depend on r. Deduce that $\mathbb{P}[\sigma_r < \infty] = 1$ for every r > 0. [You may not assume the transience of SLE_{κ} .]

2

UNIVERSITY OF

3

3 We assume throughout that $D \subseteq \mathbb{C}$ is a simply connected domain distinct from \mathbb{C} and \emptyset .

- (a) Give the definitions of:
 - (i) the Dirichlet inner product,
 - (ii) the space $H_0^1(D)$,
 - (iii) the Gaussian free field h on D.
- (b) Let $G(x,y) = -\log |x-y| G_x(y)$ where $G_x(y)$ is the function which is harmonic in D with boundary values $y \mapsto -\log |x-y|$. Explain how the L^2 inner product (h,ϕ) is defined for $\phi \in C_0^{\infty}(D)$ and show that it is a mean-zero normal random variable with variance $\iint \phi(x)G(x,y)\phi(y)dxdy$. [You may assume without proof that $-2\pi\Delta^{-1}\phi(x) = \int G(x,y)\phi(y)dy$.]
- (c) Suppose that ϕ is a conformal transformation $\mathbb{D} \to D$ with $\phi(0) = z$. Explain why the map $\psi \colon \mathbb{D} \to \mathbb{R}$ given by

$$w \mapsto \begin{cases} \log |\frac{\phi(w) - \phi(0)}{w}| & \text{for } w \neq 0\\ \log |\phi'(0)| & \text{for } w = 0 \end{cases}$$

is harmonic in \mathbb{D} . Deduce that

$$\log |\phi'(0)| = \frac{1}{2\pi} \int_{\partial \mathbb{D}} \log |\phi(w) - \phi(0)| dw$$

where dw denotes the Lebesgue measure on $\partial \mathbb{D}$.

(d) Explain why $G_z(y)$ is equal to $-\psi(\phi^{-1}(y))$ and use this to prove that $G_z(z) = -\log |\phi'(0)|$.

UNIVERSITY OF

 $\mathbf{4}$

- (a) State what it means for SLE_6 to satisfy the locality property. State what it means for $SLE_{8/3}$ to satisfy the restriction property.
- (b) Fix T > 0 and let $D \subseteq \mathbb{H}$ be a simply connected domain. Suppose that $(A_t)_{t \in [0,T]}$ is a non-decreasing family of compact \mathbb{H} -hulls which are locally growing with $A_0 = 0$, $hcap(A_t) = 2t$ for all $t \in [0,T]$, and $A_T \subseteq D$. Let $\psi: D \to \mathbb{H}$ be a conformal transformation which is bounded on bounded sets. Show that the family of compact \mathbb{H} -hulls $\widetilde{A}_t = \psi(A_t)$ for $t \in [0,T]$ is locally growing with $\widetilde{A}_0 = \emptyset$ and with

$$\operatorname{hcap}(\widetilde{A}_t) = \int_0^t 2(\psi'_s(U_s))^2 ds \quad \text{where} \quad \psi_t = \widetilde{g}_t \circ \psi \circ g_t^{-1} \quad \text{for each} \quad t \in [0, T]$$

and \tilde{g}_t is the unique conformal transformation $\mathbb{H} \setminus \tilde{A}_t \to \mathbb{H}$ with $\tilde{g}_t(z) - z \to 0$ as $z \to \infty$.

(c) Give the definition of a Brownian excursion \widehat{B} in \mathbb{H} from 0 to ∞ . Suppose that A is a compact \mathbb{H} -hull with $0 \notin \partial A$. Prove that $\mathbb{P}[\widehat{B}([0,\infty)) \cap A = \emptyset] = \psi'_A(0)$ where $\psi_A \colon \mathbb{H} \setminus A \to \mathbb{H}$ is the unique conformal transformation with $\psi_A(0) = 0$ and $\psi_A(z)/z \to 1$ as $z \to \infty$. [You may use estimates for the maps g_A provided you state them clearly.]

END OF PAPER