MATHEMATICAL TRIPOS Part III

Wednesday, 6 June, 2018 $\,$ 1:30 pm to 3:30 pm

PAPER 202

STOCHASTIC CALCULUS AND APPLICATIONS

Attempt no more than **THREE** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

- 1 Stochastic Calculus and Applications Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_t, \mathbb{P})$ be a filtered probability space.
 - (i) Define what it means for a process H to be previsible.

Let H be an adapted, left-continuous process. Must H then be previsible?

Let H be an adapted, càdlàg process. Must H then be previsible?

- (ii) Let X be an adapted finite variation process, and let H be a previsible process. Define $H \cdot X$ and prove that $H \cdot X$ is a adapted process.
- (iii) Let B be a standard one-dimensional Brownian motion. For $f : [0, \infty) \to \mathbb{R}$ a step function of the form $f = \sum_{i=1}^{n} f_i \mathbb{1}_{(s_{i-1}, s_i]}$ for deterministic $0 \leq s_1 < \cdots < s_n < \infty$ and $f_i \in \mathbb{R}$, define the stochastic integral

$$Z_t = \int_0^t f(s) \, dB_s.$$

Prove that (Z_t) is a Gaussian process, i.e., that $(Z_{t_1}, \ldots, Z_{t_n})$ is an *n*-dimensional Gaussian vector for all $t_1 < \cdots < t_n$, $n \in \mathbb{N}$. Find its covariance function $C(s,t) = \operatorname{cov}(Z_s, Z_t)$. You may not use any properties of the Itô integral unless you prove them.

Explain how this definition can be extended to $f \in L^2(\mathbb{R}_+)$.

2 Stochastic Calculus and Applications Let B and \tilde{B} be two independent Brownian motions.

- (i) Calculate $\langle B, \tilde{B} \rangle_t$ for all $t \ge 0$.
- (ii) Let $\rho \in [-1, 1]$ and set $W_t = \rho B_t + \sqrt{1 \rho^2} \tilde{B}_t$. Show that W is a Brownian motion and compute $\langle W, B \rangle_t$ for all $t \ge 0$.
- (iii) Determine which of the following processes are local martingales:

$$X_t = e^{\frac{1}{2}t} \cos B_t, \qquad X_t = B_t - t^2.$$

Are they martingales?

(iv) Let $h : \mathbb{R} \to \mathbb{R}$ be smooth with compact support. Consider the SDE

$$dX_t = h'(X_t) \, dt + dB_t$$

with $X_0 = x \in \mathbb{R}$. Show that for any bounded measurable $f : \mathbb{R} \to \mathbb{R}$,

$$\mathbb{E}_x(f(X_t)) = \mathbb{E}_x\left(\exp\left(h(B_t) - h(x) - \int_0^t V(B_s) \, ds\right) f(B_t)\right),$$

where

$$V(y) = \frac{1}{2}h'(y)^2 + \frac{1}{2}h''(y).$$

[You may use any results proved in the lectures]

CAMBRIDGE

- 3 Stochastic Calculus and Applications
 - (i) Let $b : \mathbb{R} \to \mathbb{R}$ and $\sigma : \mathbb{R} \to \mathbb{R}$ be Lipschitz functions. Prove that there is pathwise uniqueness for the stochastic differential equation

4

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt.$$

(ii) Let $b \in \mathbb{R}$, $\sigma > 0$, $x \in \mathbb{R}$ be constants, and let X be the solution of

$$X_t = x + b \int_0^t X_s ds + \sigma \int_0^t X_s dB_s.$$

Find $\mathbb{E}(X_t^k)$ for all natural numbers k.

(iii) Let X_0 be a standard normal random variable and suppose that

$$dX_t = -\frac{1}{2}X_t \, dt + dB_t.$$

 X_0 is independent of the Brownian motion. Find the distribution of X_t for $t \ge 0$ and find $cov(X_t, X_s)$ for all t, s.

4 Stochastic Calculus and Applications

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_t, \mathbb{P})$ be a filtered probability space.

(i) Let X be a local martingale.

Show that if X is nonnegative then X is a supermartingale.

Suppose that X is bounded. Is X then a martingale? If you use any result from the Stochastic Calculus lectures, you must prove it.

- (ii) Give an example of a local martingale that is not a martingale. You do not need to show that the sequence of stopping times you use tends to infinity.
- (iii) Let B be a standard one-dimensional Brownian motion, and let H be a continuous, adapted, bounded process. Prove that

$$\frac{\int_t^{t+h} H_s \, dB_s}{B_{t+h} - B_t} \to H_t \quad \text{in probability as } h \downarrow 0.$$

Hint: Estimate $\mathbb{E}(|B_{t+h} - B_t|^{-1/2})$ and show that

$$\mathbb{E}\left(\left|\int_{t}^{t+h} (H_s - H_t) \, dB_s\right|^{1/2}\right) \leqslant \mathbb{E}\left(\int_{t}^{t+h} (H_s - H_t)^2 \, ds\right)^{1/4}$$

Part III, Paper 202

5

5 Stochastic Calculus and Applications

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_t, \mathbb{P})$ be a filtered probability space. Let M be a continuous local martingale with $M_0 = 0$.

(i) Let a, b > 0. Prove that

$$\mathbb{P}(\sup_{s\leqslant t}M_s>a)\leqslant \frac{4b}{a^2}+\mathbb{P}(\langle M\rangle_t>b).$$

- (ii) Show that there is a sequence of stopping times (S_n) such that for each n, the stopped process M^{S_n} is a bounded continuous martingale.
- (iii) For p > 0, define

$$Z_n = \sum_{i=1}^{2^n} |M_{2^{-n}i} - M_{2^{-n}(i-1)}|^p.$$

Let p > 2. Show that $Z_n \to 0$ in probability as $n \to \infty$.

Let $1 and assume that <math>\limsup_{n \to \infty} Z_n < \infty$ almost surely. Show that M is indistinguishable from 0 on [0, 1].

(iv) Show that there can be at most one finite variation process $\langle M \rangle$ such that $M^2 - \langle M \rangle$ is a continuous local martingale.

Is it also always true that such a $\langle M \rangle$ exists? Explain your answer in two sentences.

6

6 Stochastic Calculus and Applications

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_t, \mathbb{P})$ be a filtered probability space, and let X, Y be continuous local martingales. The Stratonovich integral of X with respect to Y is defined by

$$\int_0^t Y_s \circ dX_s = \int_0^t Y_s \, dX_s + \frac{1}{2} \langle X, Y \rangle_t,$$

where the first term on the right-hand side is a usual Itô integral.

(i) For every $f \in C^3$ show that

$$f(X_t) - f(X_0) = \int_0^t f'(X_s) \circ dX_s.$$

- (ii) Show that $(\int_0^t X_s \circ dY_s)_t$ is in general not a local martingale.
- (iii) Show that

$$\int_0^t Y_s \circ dX_s = \lim_{n \to \infty} \sum_{i=1}^{\lceil t2^n \rceil} \frac{1}{2} (Y_{2^{-n}i} + Y_{2^{-n}(i-1)}) (X_{2^{-n}i} - X_{2^{-n}(i-1)})$$

[You may use results proved in the lectures provided they are clearly stated.]

(iv) The Hermite polynomials h_n are defined by

$$h_n(x) = e^{x^2/2} (-1)^n \frac{d^n}{dx^n} e^{-x^2/2}.$$

Let $H_n(x,t) = t^{n/2} h_n(x/\sqrt{t})$ for t > 0 and $H_n(x,0) = x^n$. You may use that

$$\frac{1}{2}\frac{\partial^2 H_n}{\partial x^2} + \frac{\partial H_n}{\partial t} = 0, \quad \frac{\partial H_n}{\partial x} = nH_{n-1} \ (n \ge 1).$$

For all n, show that $H_n(B_t, t)$ is a local martingale, where B is a standard Brownian motion. Compute $H_n(B_t, t)$ for n = 1, 2, 3.

END OF PAPER