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1 Stochastic Calculus and Applications
Let (Ω,F , (Ft)t,P) be a filtered probability space.

(i) Define what it means for a process H to be previsible.

Let H be an adapted, left-continuous process. Must H then be previsible?

Let H be an adapted, càdlàg process. Must H then be previsible?

(ii) Let X be an adapted finite variation process, and let H be a previsible process.
Define H ·X and prove that H ·X is a adapted process.

(iii) Let B be a standard one-dimensional Brownian motion. For f : [0,∞) → R a step
function of the form f =

∑n
i=1 fi1(si−1,si] for deterministic 0 6 s1 < · · · < sn < ∞

and fi ∈ R, define the stochastic integral

Zt =

∫ t

0
f(s) dBs.

Prove that (Zt) is a Gaussian process, i.e., that (Zt1 , . . . , Ztn) is an n-dimensional
Gaussian vector for all t1 < · · · < tn, n ∈ N. Find its covariance function
C(s, t) = cov(Zs, Zt). You may not use any properties of the Itô integral unless
you prove them.

Explain how this definition can be extended to f ∈ L2(R+).
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2 Stochastic Calculus and Applications
Let B and B̃ be two independent Brownian motions.

(i) Calculate 〈B, B̃〉t for all t > 0.

(ii) Let ρ ∈ [−1, 1] and set Wt = ρBt+
√

1− ρ2B̃t. Show that W is a Brownian motion
and compute 〈W,B〉t for all t > 0.

(iii) Determine which of the following processes are local martingales:

Xt = e
1

2
t cosBt, Xt = Bt − t2.

Are they martingales?

(iv) Let h : R → R be smooth with compact support. Consider the SDE

dXt = h′(Xt) dt+ dBt

with X0 = x ∈ R. Show that for any bounded measurable f : R → R,

Ex(f(Xt)) = Ex

(

exp

(

h(Bt)− h(x)−
∫ t

0
V (Bs) ds

)

f(Bt)

)

,

where

V (y) =
1

2
h′(y)2 +

1

2
h′′(y).

[You may use any results proved in the lectures]
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3 Stochastic Calculus and Applications

(i) Let b : R → R and σ : R → R be Lipschitz functions. Prove that there is pathwise
uniqueness for the stochastic differential equation

dXt = σ(Xt)dBt + b(Xt)dt.

(ii) Let b ∈ R, σ > 0, x ∈ R be constants, and let X be the solution of

Xt = x+ b

∫ t

0
Xsds+ σ

∫ t

0
XsdBs.

Find E(Xk
t ) for all natural numbers k.

(iii) Let X0 be a standard normal random variable and suppose that

dXt = −1

2
Xt dt+ dBt.

X0 is independent of the Brownian motion. Find the distribution of Xt for t > 0
and find cov(Xt,Xs) for all t, s.

4 Stochastic Calculus and Applications
Let (Ω,F , (Ft)t,P) be a filtered probability space.

(i) Let X be a local martingale.

Show that if X is nonnegative then X is a supermartingale.

Suppose that X is bounded. Is X then a martingale? If you use any result from
the Stochastic Calculus lectures, you must prove it.

(ii) Give an example of a local martingale that is not a martingale. You do not need to
show that the sequence of stopping times you use tends to infinity.

(iii) Let B be a standard one-dimensional Brownian motion, and let H be a continuous,
adapted, bounded process. Prove that

∫ t+h
t Hs dBs

Bt+h −Bt
→ Ht in probability as h ↓ 0.

Hint: Estimate E(|Bt+h −Bt|−1/2) and show that

E

(

∣

∣

∣

∣

∫ t+h

t
(Hs −Ht) dBs

∣

∣

∣

∣

1/2
)

6 E

(
∫ t+h

t
(Hs −Ht)

2 ds

)1/4

.
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5 Stochastic Calculus and Applications
Let (Ω,F , (Ft)t,P) be a filtered probability space. Let M be a continuous local

martingale with M0 = 0.

(i) Let a, b > 0. Prove that

P(sup
s6t

Ms > a) 6
4b

a2
+ P(〈M〉t > b).

(ii) Show that there is a sequence of stopping times (Sn) such that for each n, the
stopped process MSn is a bounded continuous martingale.

(iii) For p > 0, define

Zn =

2n
∑

i=1

|M2−ni −M2−n(i−1)|p.

Let p > 2. Show that Zn → 0 in probability as n → ∞.

Let 1 < p < 2 and assume that lim supn→∞ Zn < ∞ almost surely. Show that M is
indistinguishable from 0 on [0, 1].

(iv) Show that there can be at most one finite variation process 〈M〉 such that M2−〈M〉
is a continuous local martingale.

Is it also always true that such a 〈M〉 exists? Explain your answer in two sentences.
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6 Stochastic Calculus and Applications
Let (Ω,F , (Ft)t,P) be a filtered probability space, and let X,Y be continuous local

martingales. The Stratonovich integral of X with respect to Y is defined by

∫ t

0
Ys ◦ dXs =

∫ t

0
Ys dXs +

1

2
〈X,Y 〉t,

where the first term on the right-hand side is a usual Itô integral.

(i) For every f ∈ C3 show that

f(Xt)− f(X0) =

∫ t

0
f ′(Xs) ◦ dXs.

(ii) Show that (
∫ t
0 Xs ◦ dYs)t is in general not a local martingale.

(iii) Show that

∫ t

0
Ys ◦ dXs = lim

n→∞

⌈t2n⌉
∑

i=1

1

2
(Y2−ni + Y2−n(i−1))(X2−ni −X2−n(i−1)).

[You may use results proved in the lectures provided they are clearly stated.]

(iv) The Hermite polynomials hn are defined by

hn(x) = ex
2/2(−1)n

dn

dxn
e−x2/2.

Let Hn(x, t) = tn/2hn(x/
√
t) for t > 0 and Hn(x, 0) = xn. You may use that

1

2

∂2Hn

∂x2
+

∂Hn

∂t
= 0,

∂Hn

∂x
= nHn−1 (n > 1).

For all n, show that Hn(Bt, t) is a local martingale, where B is a standard Brownian
motion. Compute Hn(Bt, t) for n = 1, 2, 3.

END OF PAPER
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