MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2018 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 201

ADVANCED PROBABILITY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) State Doob's upcrossing lemma for discrete time martingales.

(b) State and prove the almost sure martingale convergence theorem for discrete time martingales.

 $\mathbf{2}$

(c) Let $(X_n)_{n\geq 0}$ be a sequence of independent random variables with $\mathbf{E}X_n = 0$ for all n, and $\sum_{n=0}^{\infty} \mathbf{E}X_n^2 < \infty$. Show that $\sum_{n=0}^{\infty} X_n$ converges almost surely.

(d) Give an example of a martingale that converges almost surely but not in L^1 .

$\mathbf{2}$

(a) Define uniform integrability of a sequence of random variables $(X_n)_{n \ge 0}$, and state the convergence theorem for uniformly integrable discrete time martingales.

(b) Let $(X_n)_{n \ge 0}$ be a discrete time martingale, and let T be an almost surely finite stopping time such that,

$$\mathbf{E}|X_T| < \infty$$
 and $\lim_{n \to \infty} \mathbf{E}(|X_n| \mathbf{1}_{\{T > n\}}) = 0.$

Prove that the stopped process $(X_{n \wedge T})_{n \ge 0}$ is uniformly integrable.

(c) Let T be a random variable taking values in the natural numbers $\{0, 1, 2, ...\}$. Prove that

$$\mathbf{E}T = \sum_{n=0}^{\infty} \mathbf{P}(T > n).$$

(d) Let $(X_n)_{n \ge 0}$ be a discrete time martingale with respect to a filtration $(\mathcal{F}_n)_{n \ge 0}$ such that $X_0 = 0$ and for all $n \ge 0$,

$$\mathbf{E}(|X_{n+1} - X_n| \mid \mathcal{F}_n) \leqslant C \quad \text{a.s.}$$

for some finite constant C. Let T be a stopping time with $\mathbf{E}T < \infty$. Prove that $\mathbf{E}X_0 = \mathbf{E}X_T$.

[Hint: Show that $Y = \sum_{n=0}^{\infty} |X_{n+1} - X_n| \mathbf{1}_{\{T>n\}}$ is integrable and use it to bound the quantities appearing in (b).]

UNIVERSITY OF

3

3 Let $(X_n)_{n \ge 1}$ be a sequence of independent identically distributed and integrable random variables with $\mathbf{E}X_1 = m$. For $n \ge 1$, let $S_n = X_1 + \cdots + X_n$.

- (a) Define the *tail* σ -algebra of $(X_n)_{n \ge 1}$ and state Kolmogorov's 0-1 law.
- (b) Show that

$$\mathbf{E}(X_1 \mid S_n, S_{n+1}, \ldots) = \frac{S_n}{n} \quad \text{a.s.}$$

(c) Prove the strong law of large numbers, i.e.,

$$\lim_{n \to \infty} \frac{S_n}{n} = m \quad \text{a.s}$$

[You need not prove the backwards martingale convergence theorem.]

(d) Let

$$\tilde{S}_n = X_1 X_2 + X_2 X_3 + \dots + X_n X_{n+1}.$$

Show that

$$\lim_{n \to \infty} \frac{\tilde{S}_n}{n} = m^2 \quad \text{a.s.}$$

 $\mathbf{4}$

(a) Define a standard Brownian motion $(B_t)_{t\geq 0}$ in one dimension.

(b) Consider the process $U_t = B_t - tB_1$ for $t \in [0,1]$ and show that $(U_t)_{t \in [0,1]}$ is independent of B_1 .

(c) Consider the process $W_t = (B_t, B'_t)$ for $t \ge 0$, where $(B'_t)_{t\ge 0}$ is an independent version of $(B_t)_{t\ge 0}$. Let $A \subset \mathbb{R}^2$ be given by

$$A = \{(x, y) \in \mathbb{R}^2 : -1 \leqslant x - y \leqslant 3\}$$

and let $\tau = \inf\{t \ge 0 : W_t \in \partial A\}$. Compute $\mathbf{P}(B_\tau = B'_\tau - 1)$.

(d) Let (Ω, \mathbf{P}) be the probability space on which $(B_t)_{t \ge 0}$ is defined. Prove that

 $\mathbf{P}(\{\omega \in \Omega : t \mapsto B_t(\omega) \text{ is uniformly continuous on } [0,\infty)\}) = 0.$

UNIVERSITY OF

5 Let $(B_t)_{t\geq 0}$ be a standard Brownian motion in one dimension and let $S_t = \sup_{0\leq s\leq t} B_s$.

4

- (a) State the reflection principle for $(B_t)_{t\geq 0}$ and a stopping time T.
- (b) Show that $\mathbb{P}(S_{\infty} = \infty) = 1$.
- (c) Prove that for any $x \leq y, y > 0$,

$$\mathbf{P}(S_t \ge y, B_t \le x) = \mathbf{P}(B_t \ge 2y - x)$$

(d) A random variable T is said to have an α -stable distribution if for all $n \in \mathbb{N}$,

$$\frac{T^{(1)} + T^{(2)} + \ldots + T^{(n)}}{n^{1/\alpha}} \sim T,$$

where $T^{(i)}$ are independent copies of T and \sim denotes equality in distribution. Show that $T_a = \inf\{s \ge 0 : B_s \ge a\}, a > 0$, has a $\frac{1}{2}$ -stable distribution. [Hint: Take x = y = a.]

6

(a) State Lévy's continuity theorem.

(b) We say that $(X_n)_{n \ge 1}$ converges in distribution if the laws of X_n converge weakly.

Let $(X_n)_{n \ge 1}$ be independent and identically distributed. Assume that for all $t \in \mathbb{R}$,

$$\mathbf{E}e^{itX_1} = 1 + iat + f(t)$$

where a is a constant, and

$$\frac{|f(t)|}{t} \to 0 \qquad \text{as } t \to 0, t \neq 0.$$

Show that

$$\frac{X_1 + \ldots + X_n}{n} \to a \quad \text{in distribution as } n \to \infty.$$

(c) We say that a sequence of real random variables $(X_n)_{n\geq 0}$ defined on the same probability space (Ω, \mathbf{P}) converges in probability to a random variable X if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbf{P}(|X_n - X| > \varepsilon) = 0.$$

Prove that if $(X_n)_{n\geq 0}$ converges in probability, then it converges in distribution, and give a counterexample for the converse statement.

(d) Prove that if $(X_n)_{n \ge 0}$ converges in distribution to 0, then it converges in probability to 0.

5

END OF PAPER

Part III, Paper 201