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1

(a) State Doob’s upcrossing lemma for discrete time martingales.

(b) State and prove the almost sure martingale convergence theorem for discrete
time martingales.

(c) Let (Xn)n>0 be a sequence of independent random variables with EXn = 0 for
all n, and

∑∞
n=0EX2

n < ∞. Show that
∑∞

n=0Xn converges almost surely.

(d) Give an example of a martingale that converges almost surely but not in L1.

2

(a) Define uniform integrability of a sequence of random variables (Xn)n>0, and
state the convergence theorem for uniformly integrable discrete time martingales.

(b) Let (Xn)n>0 be a discrete time martingale, and let T be an almost surely finite
stopping time such that,

E|XT | < ∞ and lim
n→∞

E
(

|Xn|1{T>n}

)

= 0.

Prove that the stopped process (Xn∧T )n>0 is uniformly integrable.

(c) Let T be a random variable taking values in the natural numbers {0, 1, 2, . . . }.
Prove that

ET =

∞
∑

n=0

P(T > n).

(d) Let (Xn)n>0 be a discrete time martingale with respect to a filtration (Fn)n>0

such that X0 = 0 and for all n > 0,

E(|Xn+1 −Xn| | Fn) 6 C a.s.

for some finite constant C. Let T be a stopping time with ET < ∞. Prove that
EX0 = EXT .
[Hint: Show that Y =

∑∞
n=0 |Xn+1 − Xn|1{T>n} is integrable and use it to bound the

quantities appearing in (b).]
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3 Let (Xn)n>1 be a sequence of independent identically distributed and integrable
random variables with EX1 = m. For n > 1, let Sn = X1 + · · ·+Xn.

(a) Define the tail σ-algebra of (Xn)n>1 and state Kolmogorov’s 0-1 law.

(b) Show that

E(X1 | Sn, Sn+1, . . .) =
Sn

n
a.s.

(c) Prove the strong law of large numbers, i.e.,

lim
n→∞

Sn

n
= m a.s.

[You need not prove the backwards martingale convergence theorem.]

(d) Let
S̃n = X1X2 +X2X3 + · · ·+XnXn+1.

Show that

lim
n→∞

S̃n

n
= m2 a.s.

4

(a) Define a standard Brownian motion (Bt)t>0 in one dimension.

(b) Consider the process Ut = Bt − tB1 for t ∈ [0, 1] and show that (Ut)t∈[0,1] is
independent of B1.

(c) Consider the process Wt = (Bt, B
′
t) for t > 0, where (B′

t)t>0 is an independent
version of (Bt)t>0. Let A ⊂ R

2 be given by

A = {(x, y) ∈ R
2 : −1 6 x− y 6 3}

and let τ = inf{t > 0 : Wt ∈ ∂A}. Compute P(Bτ = B′
τ − 1).

(d) Let (Ω,P) be the probability space on which (Bt)t>0 is defined. Prove that

P({ω ∈ Ω : t 7→ Bt(ω) is uniformly continuous on [0,∞)}) = 0.
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5 Let (Bt)t>0 be a standard Brownian motion in one dimension and let St =
sup06s6tBs.

(a) State the reflection principle for (Bt)t>0 and a stopping time T .

(b) Show that P(S∞ = ∞) = 1.

(c) Prove that for any x 6 y, y > 0,

P(St > y,Bt 6 x) = P(Bt > 2y − x).

(d) A random variable T is said to have an α-stable distribution if for all n ∈ N,

T (1) + T (2) + . . .+ T (n)

n1/α
∼ T,

where T (i) are independent copies of T and ∼ denotes equality in distribution. Show that
Ta = inf{s > 0 : Bs > a}, a > 0, has a 1

2 -stable distribution.
[Hint: Take x = y = a.]

6

(a) State Lévy’s continuity theorem.

(b) We say that (Xn)n>1 converges in distribution if the laws of Xn converge weakly.

Let (Xn)n>1 be independent and identically distributed. Assume that for all t ∈ R,

EeitX1 = 1 + iat+ f(t)

where a is a constant, and

|f(t)|

t
→ 0 as t → 0, t 6= 0.

Show that
X1 + . . .+Xn

n
→ a in distribution as n → ∞.

(c) We say that a sequence of real random variables (Xn)n>0 defined on the same
probability space (Ω,P) converges in probability to a random variable X if for every ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0.

Prove that if (Xn)n>0 converges in probability, then it converges in distribution, and give
a counterexample for the converse statement.

(d) Prove that if (Xn)n>0 converges in distribution to 0, then it converges in
probability to 0.
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