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All manifolds here are assumed to be closed (no boundary) and connected.

1

(a) State Moser’s theorem. [You can use it from now on without proving it.]

(b) Prove the following classification result: two compact symplectic surfaces are
symplectomorphic if and only if they have the same genus and the same symplectic area.
[You may use without proof the fact that two orientable smooth compact surfaces are
diffeomorphic if and only if they have the same genus.]

(c) Prove the following theorem, also due to Moser, which is in a sense the higher
dimensional analogue of the classification result in part (b):

Theorem. Let M be a compact n-dimensional manifold and β0, β1 be two volume forms
on M . Then there exists a diffeomorphism φ : M → M such that φ∗β1 = β0 if and only if∫
M

β0 =
∫
M

β1 (or equivalently [β0] = [β1] ∈ Hn
dR(M)).

2

(a) Let (V,Ω) be a symplectic vector space and let the linear map S : V → V be an
anti-symplectic involution, that is, S2 = IdV and S∗Ω = −Ω. Show that Fix(S), the set
of points fixed by S, is a Lagrangian subspace of (V,Ω).

(b) In the same setting as above, show that there exists a symplectic basis
e1, . . . , en, f1, . . . , fn of (V,Ω) such that Sei = ei and Sfi = −fi.

(c) Let (M,ω) be a symplectic manifold and let the diffeomorphism σ : M → M
be an anti-symplectic involution, that is, σ2 = IdM and σ∗ω = −ω. Show that if it is not
empty, then Fix(σ) is a Lagrangian submanifold of (M,ω). [You may use without proof
that for each p ∈ Fix(σ) there are coordinates centered around p in which the map σ is
linear.]

(d) Show that {(z1, . . . , zn) ∈ C
n|zj ∈ R)} ≃ R

n is a Lagrangian submanifold of
(Cn, ω̃FS = i

2
∂∂ ln(|z2|+ 1)).

(e) Recall that the Fubini–Study form ωFS on CPn = C
n+1/z ∼ λz, λ ∈ C \ {0} is

obtained by gluing together ϕ∗

i ω̃FS, where {(Ui,C
n, ϕi)| i = 0, . . . , n} is an atlas for CPn,

with Ui = {[z0, . . . , zn] ∈ CPn|zi 6= 0} and ϕi : Ui → C
n is given by ϕi([z0, . . . , zn]) =

1

zi
(z0, . . . , zi−1, zi+1, . . . , zn).

Show that RPn = R
n+1/x ∼ λx, λ ∈ R \ {0} is a Lagrangian submanifold of

(CPn, ωFS).
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3 Let (M,ω) be a symplectic manifold. Given an isotopy ρt : M → M , let Xt

denote the time-dependent vector field that generates it. We say that ρt is a symplectic
isotopy if each ρt is a symplectomorphism and that ρt is a Hamiltonian isotopy if Xt

is a Hamiltonian vector field for each t. In this problem, (M,ω) is an exact symplectic
manifold, i.e., ω = −dλ for some 1-form λ.

(a) Show that ρt is a symplectic isotopy if and only if the 1-form ρ∗tλ− λ is closed
for every t.

(b) In this and the next part, you are asked to show that ρt is a Hamiltonian isotopy
if and only if the 1-form ρ∗tλ− λ is exact for every t.

First, show that if Ht is a family of Hamiltonian functions for the family of vector
fields Xt, then ρ∗tλ− λ = dFt where Ft =

∫ t

0
(ιXs

λ−Hs) ◦ ρs ds.

(c) Next, show that if there exists a smooth family of functions Ft : M → R such
that ρ∗tλ− λ = dFt for every t, then Xt is a Hamiltonian vector field for each t.

4 (a) Show that the graph of a 1-form β on X is a Lagrangian submanifold of T ∗X
if and only if β is closed.

(b) Consider the map f : T ∗X → T ∗X given by f(x, ξ) = (x, ξ + βx). Show that if
β is closed then f is a symplectomorphism.

(c) Show that if β is exact then f is a Hamiltonian diffeomorphism (i.e. f = ρ1 for
some Hamiltonian isotopy ρt, as defined in Question 3 above).

5 A submanifold L of an almost complex manifold (M,J) is totally real if dim(L) =
1

2
dim(M) and TpL ∩ Jp(TpL) = {0} for all p ∈ L.

(a) Give the definition of a compatible almost complex structure J on (M,ω) and
explain what a compatible triple (ω, J, g) is.

(b) Let (ω, J, g) be a compatible triple on M . Show that L is a Lagrangian
submanifold of (M,ω) if and only if Jp(TpL) = (TpL)

⊥, where ⊥ is with respect to g.
Conclude that a Lagrangian submanifold L of (M,ω) is a totally real submanifold of
(M,J).

(c) Give an example of a totally real submanifold that is not a Lagrangian sub-
manifold (and show that it is indeed an example). Your example need not be compact.
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6 Except where explicitly told otherwise, justify all your answers.

(a) Let (M,ω) be a symplectic manifold endowed with a Hamiltonian action of a
Lie group G with moment map φ : M → g∗. Let H be a Lie subgroup of G and i : h →֒ g

be the inclusion of the Lie algebra. Show that the restriction action of H on (M,ω) is
Hamiltonian with moment map given by π ◦ φ : M → h∗, where π : g∗ → h∗ is the
projection dual to the above inclusion, i.e., 〈π(η),X〉H = 〈η, i(X)〉G.

(b) Consider the diagonal inclusion of the circle S1 into the torus T
n given by

t 7→ (t, . . . , t). In this case, what is the map π : Rn → R dual to the diagonal inclusion?
(As usual we identify the Lie algebras of S1 and T

n and also their duals with R and R
n

respectively.)

(c) Consider the standard Hamiltonian T 2-action on (CP 2, ωFS) given by

(t1, t2) · [z0, z1, z2] = [z0, t1z1, t2z2].

What is its moment map φ : CP 2 → R
2? [You can just write the moment map,

no justification needed. For the sake of the rest of the question, pick φ such that
φ ([1, 0, 0]) = (0, 0).] What is the corresponding image φ(CP 2)?

Now consider the diagonal action of S1 on CP 2. What points are fixed by it? What
is the moment map µ : CP 2 → R? [For the sake of the rest of the question, make sure µ
is such that µ ([1, 0, 0]) = 0.] What is the corresponding image µ(CP 2)?

(d) Is the level set µ−1(−1

4
) a Lagrangian, or an isotropic, or a coisotropic

submanifold of CP 2, or none of these?

(e) What is the quotient space Mred = µ−1(−1

4
)/S1 as a manifold? (You are not

asked to address its reduced symplectic form ωred.)
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