MATHEMATICAL TRIPOS Part III

Friday, 8 June, 2018 1:30 pm to 3:30 pm

PAPER 139

POSITIVITY IN ALGEBRAIC GEOMETRY

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1 In this question all schemes and varieties are assumed to be defined over an algebraically closed field.

- (i) Let X be a projective scheme of dimension n.State the Asymptotic Riemann Roch Theorem for X.
- (ii) Let X be a projective scheme of dimension n. State Nakai's criterion and Kleiman's Theorem for X.
- (iii) Let X be a projective scheme of dimension n. Let D be a nef Cartier divisor on X.

Assume that for any projective scheme Y of dimension k < n, for any nef Cartier divisor N on Y and for any 0 < i < k there exist a positive real number C_i such that

$$h^i(Y, \mathcal{O}_Y(mN)) \leq C_i m^{k-1}$$
, for all $m \gg 0$.

Show that for any j > 1 there exists there exists a positive real number C'_j such that

$$|h^j(X, \mathcal{O}_X(mD))| \leqslant C'_j m^{n-1},$$

for all $m \gg 0$.

[*Hint:* as in the proof of Nakai's criterion, you may want to consider the two short exact sequences

$$\begin{array}{ll} 0 \to \mathcal{O}_X(mD - H_1) \to & \mathcal{O}_X(mD) \to \mathcal{O}_{H_1}(mD) \to 0 \\ 0 \to \mathcal{O}_X(mD - H_1) \to & \mathcal{O}_X((m-1)D) \to \mathcal{O}_{H_2}((m-1)D) \to 0. \end{array}$$

for a suitable choice of divisors H_1, H_2 .]

(iv) Under the same assumptions as in (iii), show that

$$h^0(X, \mathcal{O}_X(mD)) - h^1(X, \mathcal{O}_X(mD)) = \frac{D^n}{n!}m^n + \text{lower order terms.}$$

Moreover, show that if for any sufficiently positive integer m, $h^0(X, \mathcal{O}_X(mD)) = 0$, then $D^n = 0$ and there exists a positive real number T'_1 such that

$$h^1(X, \mathcal{O}_X(mD)) \leqslant T'_1 m^{n-1}$$

(v) Let X be a projective scheme of dimension n. Show that for any $j \ge 1$ there exists there exists a positive real number T_j such that

$$h^{j}(X, \mathcal{O}_{X}(mD)) \leq T_{j}m^{n-1}, \text{ for all } m \gg 0.$$

[Hint: proceed by induction on the dimension of X and then use (iii) and (iv) where appropriate. You will need to discuss separately the case where $h^0(X, \mathcal{O}_X(mD)) \neq 0$ for infinitely positive values of m.]

(vi) Let X be a projective irreducible variety of dimension n. Let D be a nef Cartier divisor on D. Show that

$$\lim_{m \to \infty} \frac{h^0(X, \mathcal{O}_X(mD))}{m^n} > 0$$

if and only if $D^n > 0$.

4

2 In this question X will denote a smooth projective surface defined over an algebraically closed field k.

- (i) Let H be a Cartier divisor on X. Assume that $|H| \neq \emptyset$. Define the *fixed* and the *movable* part of the linear system |F|. Show that:
 - (a) the movable part of |H| is always nef on X;
 - (b) if the Kodaira dimension of H is zero, then for any positive integer n the movable part of |nH| is trivial.
- (ii) Let D be a nef divisor on X. Assume that dim $|D| \ge 1$ and $D^2 = 0$. Show that if |D| is movable then D is base point free. Show also that the Kodaira dimension of D is one.
- (iii) Let H be a Cartier divisor on X. Assume that $|H| \neq \emptyset$. For any positive integer n, let $|nH| = F_n + |M_n|$ be the decomposition into fixed and movable part. Show that:
 - (1) the Kodaira dimension of H is two, if and only if for some $n M_n^2 > 0$.
 - (2) the Kodaira dimension of H is one if and only if for all $n M_n^2 = 0$ and there exists a positive integer n' such that dim $|M_{n'}| \ge 1$.

For the remainder of the exercise we will assume that on the smooth projective surface $X, K_X \sim 0$ and $H^1(X, \mathcal{O}_X) = 0$.

- (iv) Show that $\chi(X, \mathcal{O}_X) = 2$.
- (v) Let D be a nef divisor on X which is not numerically trivial. Assume that $D^2 = 0$. Then $h^0(X, \mathcal{O}_X(D)) \ge 2$.
- (vi) Let |D| = F + |M| be the decomposition into fixed and movable part. Show that:
 - (a) for any component E in the support of F, $E^2 < 0$;
 - (b) $F^2 < 0.$
- (vii) Show that |D| is base point free and that the Kodaira dimension of D is one.

5

3 In this question all schemes and varieties are assumed to be defined over an algebraically closed field.

(i) Let X be an irreducible projective variety of dimension n. Let D be a Cartier divisor on X.

Show that there exists a positive real number C such that

 $h^0(X, \mathcal{O}_X(mD)) \leq Cm^n,$

for $m \gg 0$.

(ii) Let X be an irreducible projective variety of dimension n. Let D be a Cartier divisor on X such that $h^0(X, \mathcal{O}_X(mD)) \ge C'm^n$ for some positive real number C' and for infinitely many positive integers m. Let F be an effective divisor.

Show that there exist infinitely many positive integers k such that

$$h^0(X, \mathcal{O}_X(kD - F)) \neq 0.$$

For the purpose of this question you can assume that the statement that you proved in (i) holds for any projective scheme of dimension n.

(iii) Let X be an irreducible projective variety of dimension n. Let D be a Cartier divisor on X

Show that the following are equivalent:

- (1) there exists a positive real number C' such that $h^0(X, \mathcal{O}_X(mD)) \ge C'm^n$ for and for infinitely many positive integers m;
- (2) for some ample Cartier divisor A on X, there exists a positive integer n and an effective divisor E such that $jD \sim A + E$;
- (3) for some ample Cartier divisor A on X, there exists a positive integer n and an effective divisor E such that $jD \equiv A + E$;

Show moreover that conditions (2) and (3) can be replaced by the stronger conditions:

- (2') for any ample Cartier divisor A on X, there exists a positive integer n and an effective divisor E such that $jD \sim A + E$;
- (3') for any ample Cartier divisor A on X, there exists a positive integer n and an effective divisor E such that $jD \equiv A + E$.
- (iv) Let X be an irreducible projective variety of dimension n. Let D be a Cartier divisor on X satisfying any of the hypothesis stated in (iii). Show that there exists a positive integer n such that the natural map induced by the linear system |jD|,

$$\phi_{|jD|} \colon X \dashrightarrow \mathbb{P}(H^0(X, \mathcal{O}_X(jD))),$$

is birational onto its image. When X is smooth, is the converse true?

Part III, Paper 139

[TURN OVER

- (v) Let X be an irreducible projective variety of dimension n. Let D be an \mathbb{R} -Cartier \mathbb{R} -divisor on X. Show that the following are equivalent:

 - (a) $D = \sum d_i D_i$, where the d_i are positive real numbers and D_i are Cartier divisors on X satisfying any of the properties from part (*iii*).
 - (b) for some ample Cartier divisor A on X, there exists a positive real number t and an effective \mathbb{R} -divisor E such that $D \sim_{\mathbb{R}} tA + E$;
 - (c) for some ample \mathbb{R} -Cartier \mathbb{R} -divisor A' on X, there exists an effective \mathbb{R} -divisor E' such that $D \equiv A' + E'$;

Show moreover that if D' is an \mathbb{R} -Cartier \mathbb{R} -divisor on X with $D \equiv D'$ then D satisfies any of the properties (a) - (c) if and only if D' does.

(vi) Let X be an irreducible projective variety of dimension n. Show that the set

 $\operatorname{Big}(X) := \{ [D] \in \operatorname{N}^1_{\mathbb{R}}(X) \mid D \text{ satisfies any of the properties stated in } (v) \}$

is an open cone in $N^1_{\mathbb{R}}(X)$. Can Big(X) contain a positive dimensional vector subspace of $N^1_{\mathbb{R}}(X)$?

END OF PAPER