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1 In this question all schemes and varieties are assumed to be defined over an
algebraically closed field.

(i) Let X be a projective scheme of dimension n.
State the Asymptotic Riemann Roch Theorem for X.

(ii) Let X be a projective scheme of dimension n.
State Nakai’s criterion and Kleiman’s Theorem for X.

(iii) Let X be a projective scheme of dimension n. Let D be a nef Cartier
divisor on X.
Assume that for any projective scheme Y of dimension k < n, for any nef
Cartier divisor N on Y and for any 0 < i < k there exist a positive real
number Ci such that

hi(Y,OY (mN)) 6 Cim
k−1, for all m ≫ 0.

Show that for any j > 1 there exists there exists a positive real number C ′
j

such that
|hj(X,OX (mD))| 6 C ′

jm
n−1,

for all m ≫ 0.

[Hint: as in the proof of Nakai’s criterion, you may want to consider the
two short exact sequences

0 → OX(mD −H1) → OX(mD) → OH1
(mD) → 0

0 → OX(mD −H1) → OX((m− 1)D) → OH2
((m− 1)D) → 0.

for a suitable choice of divisors H1,H2.]

(iv) Under the same assumptions as in (iii), show that

h0(X,OX (mD))− h1(X,OX (mD)) =
Dn

n!
mn + lower order terms.

Moreover, show that if for any sufficiently positive integerm, h0(X,OX (mD)) =
0, then Dn = 0 and there exists a positive real number T ′

1
such that

h1(X,OX (mD)) 6 T ′
1m

n−1

(v) Let X be a projective scheme of dimension n. Show that for any j > 1
there exists there exists a positive real number Tj such that

hj(X,OX (mD)) 6 Tjm
n−1, for all m ≫ 0.

[Hint: proceed by induction on the dimension of X and then use (iii) and
(iv) where appropriate. You will need to discuss separately the case where
h0(X,OX (mD)) 6= 0 for infinitely positive values of m.]
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(vi) Let X be a projective irreducible variety of dimension n. Let D be a nef
Cartier divisor on D.
Show that

lim
m→∞

h0(X,OX (mD))

mn
> 0

if and only if Dn > 0.
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2 In this question X will denote a smooth projective surface defined over an
algebraically closed field k.

(i) Let H be a Cartier divisor on X. Assume that |H| 6= ∅.
Define the fixed and the movable part of the linear system |F |.
Show that:

(a) the movable part of |H| is always nef on X;

(b) if the Kodaira dimension of H is zero, then for any positive integer
n the movable part of |nH| is trivial.

(ii) Let D be a nef divisor on X. Assume that dim |D| > 1 and D2 = 0.
Show that if |D| is movable then D is base point free. Show also that the
Kodaira dimension of D is one.

(iii) Let H be a Cartier divisor on X. Assume that |H| 6= ∅. For any positive
integer n, let |nH| = Fn+|Mn| be the decomposition into fixed and movable
part.
Show that:

(1) the Kodaira dimension of H is two, if and only if for some n M2
n > 0.

(2) the Kodaira dimension of H is one if and only if for all n M2
n = 0

and there exists a positive integer n′ such that dim |Mn′ | > 1.

For the remainder of the exercise we will assume that on the smooth projective surface
X, KX ∼ 0 and H1(X,OX ) = 0.

(iv) Show that χ(X,OX ) = 2.

(v) Let D be a nef divisor on X which is not numerically trivial. Assume that
D2 = 0. Then h0(X,OX (D)) > 2.

(vi) Let |D| = F + |M | be the decomposition into fixed and movable part.
Show that:

(a) for any component E in the support of F, E2 < 0;

(b) F 2 < 0.

(vii) Show that |D| is base point free and that the Kodaira dimension ofD is one.
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3 In this question all schemes and varieties are assumed to be defined over an
algebraically closed field.

(i) Let X be an irreducible projective variety of dimension n. Let D be a
Cartier divisor on X.
Show that there exists a positive real number C such that

h0(X,OX (mD)) 6 Cmn,

for m ≫ 0.

(ii) Let X be an irreducible projective variety of dimension n. Let D be a
Cartier divisor on X such that h0(X,OX (mD)) > C ′mn for some positive
real number C ′ and for infinitely many positive integers m. Let F be an
effective divisor.
Show that there exist infinitely many positive integers k such that

h0(X,OX(kD − F )) 6= 0.

For the purpose of this question you can assume that the statement that
you proved in (i) holds for any projective scheme of dimension n.

(iii) Let X be an irreducible projective variety of dimension n. Let D be a
Cartier divisor on X

Show that the following are equivalent:

(1) there exists a positive real number C ′ such that h0(X,OX (mD)) >
C ′mn for and for infinitely many positive integers m;

(2) for some ample Cartier divisor A on X, there exists a positive integer
n and an effective divisor E such that jD ∼ A+ E;

(3) for some ample Cartier divisor A on X, there exists a positive integer
n and an effective divisor E such that jD ≡ A+ E;

Show moreover that conditions (2) and (3) can be replaced by the stronger
conditions:

(2’) for any ample Cartier divisor A on X, there exists a positive integer
n and an effective divisor E such that jD ∼ A+ E;

(3’) for any ample Cartier divisor A on X, there exists a positive integer
n and an effective divisor E such that jD ≡ A+ E.

(iv) Let X be an irreducible projective variety of dimension n. Let D be a
Cartier divisor on X satisfying any of the hypothesis stated in (iii).
Show that there exists a positive integer n such that the natural map
induced by the linear system |jD|,

φ|jD| : X 99K P(H0(X,OX (jD))),

is birational onto its image. When X is smooth, is the converse true?
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(v) Let X be an irreducible projective variety of dimension n. Let D be an
R-Cartier R-divisor on X.
Show that the following are equivalent:

(a) D =
∑

diDi, where the di are positive real numbers and Di are
Cartier divisors on X satisfying any of the properties from part (iii).

(b) for some ample Cartier divisor A on X, there exists a positive real
number t and an effective R-divisor E such that D ∼R tA+ E;

(c) for some ample R-Cartier R-divisor A′ on X, there exists an effective
R-divisor E′ such that D ≡ A′ + E′;

Show moreover that if D′ is an R-Cartier R-divisor on X with D ≡ D′

then D satisfies any of the properties (a)− (c) if and only if D′ does.

(vi) Let X be an irreducible projective variety of dimension n. Show that the
set

Big(X) := {[D] ∈ N1

R
(X) | D satisfies any of the properties stated in (v)}

is an open cone in N1

R
(X).

Can Big(X) contain a positive dimensional vector subspace of N1

R
(X)?

END OF PAPER
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