MATHEMATICAL TRIPOS Part III

Thursday, 31 May, 2018 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 138

MODULAR REPRESENTATION THEORY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) Suppose that k is a field of characteristic p and that p divides the order of the finite group G. Show that kG is not semisimple.

(b) Let k be a field of characteristic p. Recall that a module over a ring is cyclic if it is generated by one element. Show that every finitely-generated $k[X]/(X^{p^n})$ -module is a direct sum of cyclic modules $M_r = k[X]/(X^r)$, where $1 \le r \le p^n$. Show that each module M_r is uniserial, (i.e. it has a unique composition series) and hence is indecomposable. Identify those M_r which are irreducible.

Deduce that if G is cyclic group of order p^n then kG has exactly p^n indecomposable modules, one of each dimension i with $1 \leq i \leq p^n$, each being uniserial.

$\mathbf{2}$

(a) Let G be a finite group with $|G| = p^a m$, where p does not divide m, and let k be a field of characteristic p. Suppose that k has all mth roots of unity. Define the Brauer character χ_V of the representation $\rho: G \to \mathrm{GL}(V)$. If V, V' are finite-dimensional kG-modules, show that $\chi_V = \chi_{V'}$ if and only if the multiplicities of each simple module as composition factors of V, V' are equal. [Relevant results may be quoted, if stated clearly.]

(b) Let (K, R, k) be a *p*-modular system and let *G* be a finite group and let V, V' be finite-dimensional *kG*-modules, with Brauer characters χ_V and $\chi_{V'}$, respectively. Show that

(i)
$$\chi_V(g^{-1}) = \overline{\chi_V(g)} = \chi_{V^*}(g)$$
;

(ii) $\chi_{V\otimes V'} = \chi_V \cdot \chi_{V'}$;

(iii) If χ is a Brauer character, then the trivial Brauer character is a constituent of $\chi \overline{\chi}$.

(c) Suppose that G is a non-abelian simple group and suppose that p is an odd prime. If χ is a non-trivial irreducible p-modular Brauer character of G show that $\chi(1) > 2$.

UNIVERSITY OF

3

Let G be a finite group and k a field of characteristic p > 0.

(a) Define the *Grothiendieck group* R(G) of G and explain how one makes R(G) into a commutative ring.

(b) Show that the map

$$\mathbb{C} \otimes_{\mathbb{Z}} R(G) \to \prod \mathbb{C}$$

(over conjugacy classes of p'-elements of G) is an algebra isomorphism. [Relevant results may be assumed, if clearly stated.]

Deduce that the number of simple kG-modules up to isomorphism equals the number of conjugacy classes of p'-elements of G.

(c) Let k be a splitting field of characteristic p for finite groups G_1 and G_2 . Deduce from (b) that the simple $k(G_1 \times G_2)$ -modules are precisely the tensor products $S_1 \otimes S_2$, where S_i is a simple kG_i -module, (i = 1, 2), and the action of $G_1 \times G_2$ is given by $(g_1, g_2) \cdot (s_1 \otimes s_2) = g_1 s_1 \otimes g_2 s_2$. Moreover show that two such tensor products $S_1 \otimes S_2$ and $S'_1 \otimes S'_2$ are isomorphic as $k(G_1 \times G_2)$ -modules if and only if $S_i \cong S'_i$ as kG_i -modules, (i = 1, 2).

$\mathbf{4}$

Let (K, \mathfrak{O}, k) be a splitting *p*-modular system for the finite group *G*. Assume *K* and \mathfrak{O} are complete with respect to the valuation. Let *V* be an irreducible *KG*-module. Define an \mathfrak{O} -form, *W*, for *V* and use it to define the *decomposition matrix*, *D*. Define also the *Cartan matrix*, *C*, of *kG*.

(i) If M, M' are KG-modules with \mathfrak{O} -forms W, W' respectively, show that $\operatorname{Hom}_{\mathfrak{O}G}(W, W')$ is an \mathfrak{O} -form of $\operatorname{Hom}_{KG}(M, M')$.

(ii) With the usual notation, show that $\mathfrak{p}\operatorname{Hom}_{\mathcal{O}G}(W, W') = \operatorname{Hom}_{\mathcal{O}G}(W, \mathfrak{p}W')$ as a subset of $\operatorname{Hom}_{\mathcal{O}G}(W, W')$.

(iii) Suppose now that W is a projective $\mathfrak{O}G$ -lattice. Show that

 $\operatorname{Hom}_{\mathfrak{O}G}(W, W')/\mathfrak{p}\operatorname{Hom}_{\mathfrak{O}G}(W, W') \cong \operatorname{Hom}_{\mathfrak{O}G}(W, W'/\mathfrak{p}W') \cong \operatorname{Hom}_{kG}(k \otimes_{\mathfrak{O}} W, k \otimes_{\mathfrak{O}} W').$

Deduce that

 $\dim_K \operatorname{Hom}_{KG}(M, M') = \dim_k \operatorname{Hom}_{kG}(k \otimes W, k \otimes W').$

(iv) Deduce that $D^T D = C$.

CAMBRIDGE

 $\mathbf{5}$

If R is a ring with 1, what does it mean for an R-module M to belong to a block B? If R is a finite-dimensional semisimple algebra over a field, describe the blocks of R (proofs are not needed).

(a) Let R be a ring with identity. Let C_1, C_2 be two sets of irreducible R-modules with the property that $C_1 \cup C_2$ contains all isomorphism types of irreducible modules, $C_1 \cap C_2 = \emptyset$, and for all $S \in C_1, T \in C_2$ there is no non-split extension $0 \to S \to V \to T \to 0$ or $0 \to T \to V \to S \to 0$. Show that every finite length module M can be written as $M = U_1 \oplus U_2$ where U_1 has all its composition factors in C_1 and U_2 has all its composition factors in C_2 . Show also that the submodules U_1 and U_2 are the unique largest submodules of M with all composition factors in C_1 and C_2 , respectively. [You may assume the Jordan-Hölder theorem.]

(b) Define an equivalence relation on the set of irreducible modules of an algebra R as follows: define $S \sim T$ if either $S \cong T$ or there is a list of irreducible R-modules $S = S_1, S_2, \ldots, S_n = T$ such that for each $i = 1, 2, \ldots, n-1$, the modules S_i, S_{i+1} appear in a non-split short exact sequence of R-modules $0 \to U \to V \to W \to 0$ with $\{U, W\} = \{S_i, S_{i+1}\}$. You may assume this is an equivalence relation.

Let R be a finite-dimensional algebra over a field k. Show that the following are equivalent for irreducible R-modules S and T:

(i) S and T lie in the same block;

(ii) There is a list of irreducible *R*-modules $S = S_1, S_2, \ldots, S_n = T$ such that S_i and S_{i+1} are both composition factors of the same projective indecomposable projective module, for each $i = 1, \ldots, n-1$;

(iii) $S \sim T$.

[Hint: for (i) \implies (iii) use part (a).]

UNIVERSITY OF

6

(a) Let k be a field of characteristic p that is a splitting field for G and all of its subgroups and let D be a p-subgroup of G. Define the Brauer morphism, and show (in the usual notation) that the Brauer morphism induces a one-to-one correspondence between block idempotents in Z(kG) with defect group D and primitive idempotents in $(kC_G(D))_D^{N_G(D)}$. State Brauer's first main theorem and deduce it from the previous result.

(b) Let $G = A_5$ and let k be a splitting field of characteristic 2. Using the fact that kA_4 has only one block (which you need not verify), show that the subgroups C_2 cannot occur as defect groups of blocks of kG.

(c) Let $G = S_3$ and $k = \mathbb{F}_4$. Let $N = \langle (123) \rangle$ and $H = \langle (12) \rangle$. It is given that the block idempotents of kN are

 $e_1 = 1 + (123) + (132), e_2 = 1 + \omega(123) + \omega^2(132)$ and $e_3 = 1 + \omega^2(123) + \omega(132),$

where ω is a primitive cube root of unity in \mathbb{F}_4 (you are not asked to verify this). Compute the orbits of G on this set of idempotents and hence find the block idempotents of \mathbb{F}_4G . For each of the block idempotents of \mathbb{F}_4G , compute the effect of the Brauer morphisms Br_1^G and Br_H^G . Hence compute the defect groups of each block.

END OF PAPER