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1 Let f : R>0 → C be a continuous function such that for every n > 0, ynf(y) → 0
as y → ∞. What is the Mellin transform M(f, s) of f? Find the Mellin transform of the
function 1/(eπy − 1).

Suppose there is an increasing sequence of real numbers σ1 < σ2 < . . . and nonzero
constants cj ∈ C such that for every integer k > 0,

f(y) = c1y
σ1 + · · ·+ cky

σk + yσk+1gk(y),

where g is continuous on [0,∞). Show that M(f, s) has a meromorphic continuation to
C, holomorphic apart from a simple pole at s = −σj with residue cj for each j > 1.

Compute the residue of Γ(s) at s = −j (j > 0). Hence or otherwise show that
ζ(1− n) = (−1)n−1Bn/n for every n > 1, where the Bernoulli numbers Bn are defined by
the generating series

t

et − 1
=

∑

n>0

Bn

n!
tn.
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2 (i) Let G be a finite abelian group, and Ĝ the group of characters of G. Show that
if g, h ∈ G then

∑

χ∈Ĝ

χ(g)−1χ(h) =

{
0 if h 6= g

#G if h = g.

(ii) Define the Dirichlet L-function L(χ, s) for a character χ : G = (Z/NZ)× → C
×,

where N > 1. Show that if (a,N) = 1 then

∑

χ∈Ĝ

χ(a)−1L(χ, s) = φ(N)
∑

n>1
n≡a (mod N)

n−s.

(iii) Let k > 3, and χ : (Z/NZ)× → C
× with χ(−1) = (−1)k. Let

Gk(χ, z) =
∑

m, n∈Z
(n,N)=1

χ(n)

(mz + n)k
.

Show that Gk(χ, z +N) = Gk(χ, z), and that

Gk(χ, z) =
∑

n>0

cne
2πinz/N ,

where c0 = 2L(χ, k) and for n > 1

cn = 2
(−2πi)k

(k − 1)!Nk
g(χ)

∑

d|n

χ(d)−1dk−1,

and
g(χ) =

∑

16a6N
(a,N)=1

χ(a)e2πia/N .

[You may use without proof the formula

π cot πz =
1

z
+

∞∑

n=1

(
1

z + n
+

1

z − n

)

for z ∈ C \ Z.]
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3 (i) Let D ⊂ H = {z ∈ C | Im(z) > 0} be the subset defined by the conditions

−
1

2
< Re(z) 6

1

2
, |z| > 1, and |z| = 1 =⇒ Re(z) > 0.

Show that any element of H is equivalent under Γ = SL(2,Z) to a unique element of D,
and determine the stabilisers under Γ of the elements of D.

(ii) Explain the meaning of the terms weak modular form, modular form and cusp

form of weight k and level 1.

Let f be a weak modular form of weight k and level 1. Show by induction that for
every ℓ > 0, f (ℓ)(z) = (d/dz)ℓf(z) satisfies

f (ℓ)(−1/z) = zk+2ℓf (ℓ)(z) +

ℓ−1∑

j=0

cℓ,jz
k+j+lf (j)(z)

where for 0 6 j 6 ℓ− 1,

cℓ,j =

(
ℓ

j

)
(k + ℓ− 1)(k + ℓ− 2) · · · (k + j).

Deduce that if f =
∑

anq
n is a weak modular form of weight k < 0, then

∑
n1−kanq

n is
a weak modular form of weight 2− k.

4 Let Γ = SL(2,Z) and let n be a positive integer. Show that the orbits of Γ acting
on the set of 2× 2 integer matrices with determinant n are parametrised by the set

Πn =

{(
a b
0 d

) ∣∣∣ a, b, d ∈ Z, 0 6 b < d, ad = n

}
.

Let f ∈ Mk(Γ). Show that Tnf = nk/2−1
∑

γ∈Πn
f |kγ belongs to Mk(Γ), and compute its

q-expansion. Deduce that a1(Tnf) = an(f).

Let T ⊂ End(Sk(Γ)) be the subring generated by Z and {Tn | n > 1}. Let
Sk(Γ,Z) = {f ∈ Sk(Γ) | an(f) ∈ Z for all n > 1}. Show that if T ∈ T and f ∈ Sk(Γ,Z)
then Tf ∈ Sk(Γ,Z).

By using a suitable Z-basis for Sk(Γ,Z), show that the map

α : T → HomZ(Sk(Γ,Z),Z)

given by α(T )(f) = a1(Tf) for T ∈ T, f ∈ Sk(Γ,Z), is an isomorphism of Z-modules, and
that a Z-basis for T is {T1, . . . , Tm} where m = dimSk(Γ).

[You may assume without proof that the forms ∆jEa
4E

b
6, with 1 6 j 6 m, a > 0,

b ∈ {0, 1} and 12j + 4a+ 6b = k, form a Z-basis for Sk(Γ,Z).]
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5 Let Γ ⊂ SL2(Z) be a subgroup of finite index d. Explain carefully what is a
modular form of weight k on Γ. Show that for all k > 0, dimMk(Γ) 6 1 + kd/12. [You
may assume the formula for the number of zeros of a modular form of level 1.]

Let Γ = Γ0(N). Suppose that N1, D are positive integers with N1D|N . Show that
if f ∈ Mk(Γ0(N1)), then f(Dz) ∈ Mk(Γ0(N)). Find a basis for the space M4(Γ0(3)).

END OF PAPER

Part III, Paper 137


