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1

State and prove the Hales-Jewett theorem, and deduce van der Waerden’s theorem.

Let m > 1 be fixed. A collection F of subsets of [n] is called adequate if whenever
[m]n is 2-coloured there is a monochromatic line whose active coordinate set belongs to
F .

(i) Show that, for any n, the collection of all subsets of [n] that contain 1 is never
adequate.

(ii) More generally, show that, for any n, a collection of subsets of [n] that is
intersecting (meaning that any two meet) cannot be adequate.

(iii) Show that, for n sufficiently large, the collection of all subsets of [n] of even size
is adequate.

2

State and prove Rado’s theorem.

[You may assume that, for any m, p, c, whenever N is finitely coloured there is a
monochromatic (m, p, c)-set.]

Let A be a partition regular matrix with at least two columns. Prove that either

whenever N is finitely coloured there is a monochromatic vector x with x1 = x2 such that
Ax = 0, or whenever N is finitely coloured there is a monochromatic vector x with x1 6= x2
such that Ax = 0. (Here as usual xi denotes the i-th coordinate of x.)

Give examples (of suitable partition regular matrices and suitable colourings) to
show that it may not be possible to choose x with x1 = x2 and that it may not be possible
to choose x with x1 6= x2.
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Define the topological space βN, and prove that it is compact and Hausdorff.

Prove that there exists an idempotent ultrafilter in βN.

[You may assume that the operation + on βN is associative and left-continuous.]

Let U1, U2, . . . and U be distinct ultrafilters such that Un tends to U .

(i) Show that there exist subsets A1, A2, . . . of N such that An ∈ Um if and only if
m = n.

(ii) Show that there exist disjoint subsets B1, B2, . . . of N such that Bn ∈ Um if and
only if m = n.

(iii) By considering the union of the sets B2, B4, B6, . . ., obtain a contradiction to
the assumption that Un tends to U .

(iv) Deduce that every convergent sequence in βN is eventually constant.

4

What does it mean to say that a subset of N(ω) is Ramsey? What does it mean to
say that a subset of N(ω) is completely Ramsey?

Give an example of a non-Ramsey set, and an example of a set that is Ramsey but
not completely Ramsey.

Prove that every ∗-open set is completely Ramsey.

[Any results quoted from the course must be proved.]

(i) Prove that every basic ∗-open set is ∗-closed.

(ii) Is every ∗-open set ∗-closed?

(iii) Give an example of a (non-empty) ∗-open set that is τ -nowhere-dense.
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