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Attempt no more than FOUR questions.

There are FIVE questions in total.

You may use any facts about the Galois theory of cubics,

for example that the discriminant of T 3 + aT + b is ∆ = −4a3 − 27b2,

and that the splitting field of T 3 + aT + b contains
√
∆.

You may use any facts about polynomials over local fields and their roots,

provided you clearly state what you use.
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1

Let K be a finite extension of Qp with valuation ring OK and residue field kK . Write

y 7→ y for the reduction map from OK to kK .

(a) State a version of Hensel’s lemma forK. Then show that, for any finite extension

ℓ/kK , there is an unramified extension L/K with residue field isomorphic to ℓ over kK .

Show that this L is unique up to isomorphism over K, using your version of Hensel’s

lemma.

(b) Define the Teichmüller lift map [−] : kK → OK and state and prove a set of

properties of [−] that defines it uniquely (you should prove that the properties you state

do define it uniquely).

Let x = x0 ∈ kK and define xn for n > 1 by xpn = xn−1. Let yn ∈ OK satisfy

yn = xn. Prove that the sequence (yp
n

n )n>1 converges to [x].

2

(a) Let L/K be a finite extension of number fields and let p be a prime of K, with

corresponding completion Kp. Let Kp be a (fixed) algebraic closure of Kp. Show that

there is a natural bijection between the primes of L above p and the Gal(Kp/Kp)-orbits of

the set of K-embeddings of L into Kp. [You may assume the equivalence between primes

and finite places]. Deduce that, if L = K(α) and f(T ) ∈ K[T ] is the minimal polynomial

of α, then there is a natural bijection between the set of primes in L above p and the

irreducible factors of f(T ) in Kp[T ].

(b) Let M = Q(β) where β is a root of g(T ) = T 5 + 6T 3 + 252T 2 + 126. Show that

[M : Q] = 5 and compute the number of primes of M above 3 and 7, respectively.
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If E is a number field, we let ClE denote the class group of E and hE = #ClE
denote the class number.

(a) Let K = Q(
√
−59) and let L be the splitting field over Q of f(T ) = T 3+2T +1.

Show that K ⊆ L, and show that L/K has degree 3 and is unramified everywhere. Deduce

that hK > 1. [You may assume that −28 is a simple root of T 3 + 2T + 1 in F59.]

(b) Let M/L be a finite extension of number fields. Assume that L has no real

places, and that there is a prime p of L which is totally ramified in M (i.e. there is a

unique prime q in M above p, and pOM = q[M :L]). Show that hL divides hM .

(c) Show that there are infinitely many cyclotomic fields Q(ζn) whose ring of integers

is not a principal ideal domain. [You may use results about cyclotomic fields from lectures,

provided that you clearly state what you use.]

[Throughout this question, you may use any results on Hilbert class fields, provided

you clearly state what you use.]

4

(a) Let L/K be a finite Galois extension of local fields with Galois group G =

Gal(L/K). Define the ramification groups Gs = Gs(L/K) of L/K in the lower numbering,

and then define the upper numbering of the ramification groups (in both cases for all non-

negative real numbers).

Assume now that OL = OK [α] and let f(T ) ∈ OK [T ] be the minimal polynomial of

α. Let vL be the normalised valuation on L. Show that

vL(f
′(α)) =

∑

16=σ∈G

vL(σ(α) − α) =
∑

s∈Z>0

(#Gs − 1).

(b) Let M be the splitting field of g(T ) = T 3−3T +3 over Q3. Compute the Galois

group and the ramification groups in the lower numbering (for all non-negative integers

only) of M/Q3. [You may use that
√
−5 ∈ Q3.]

[In both parts of the question you may use results from lectures on ramification

groups and totally ramified extensions, provided that you clearly state what you use.]
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Let L/K be a finite extension of number fields, and let M/K be the Galois closure

of L/K, with Galois group G = Gal(M/K). Let p be a prime of K and let P be a prime

of M lying above p.

(a) Define the decomposition group DP|p ⊆ G. Show that there is a natural

bijection between the primes of L above p and the double coset space H\G/DP|p, where

H = Gal(M/L).

(b) Show that p is totally split in L if and only if it is totally split in M .

END OF PAPER
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