MATHEMATICAL TRIPOS Part III

Monday, 4 June, 2018 9:00 am to 12:00 pm

PAPER 123

ALGEBRAIC NUMBER THEORY

Attempt no more than FOUR questions.

There are **FIVE** questions in total.

You may use any facts about the Galois theory of cubics, for example that the discriminant of $T^3 + aT + b$ is $\Delta = -4a^3 - 27b^2$, and that the splitting field of $T^3 + aT + b$ contains $\sqrt{\Delta}$.

You may use any facts about polynomials over local fields and their roots, provided you clearly state what you use.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let K be a finite extension of \mathbb{Q}_p with valuation ring \mathcal{O}_K and residue field k_K . Write $y \mapsto \overline{y}$ for the reduction map from \mathcal{O}_K to k_K .

(a) State a version of Hensel's lemma for K. Then show that, for any finite extension ℓ/k_K , there is an unramified extension L/K with residue field isomorphic to ℓ over k_K . Show that this L is unique up to isomorphism over K, using your version of Hensel's lemma.

(b) Define the Teichmüller lift map $[-]: k_K \to \mathcal{O}_K$ and state and prove a set of properties of [-] that defines it uniquely (you should prove that the properties you state do define it uniquely).

Let $x = x_0 \in k_K$ and define x_n for $n \ge 1$ by $x_n^p = x_{n-1}$. Let $y_n \in \mathcal{O}_K$ satisfy $\overline{y}_n = x_n$. Prove that the sequence $(y_n^{p^n})_{n\ge 1}$ converges to [x].

$\mathbf{2}$

(a) Let L/K be a finite extension of number fields and let \mathfrak{p} be a prime of K, with corresponding completion $K_{\mathfrak{p}}$. Let $\overline{K}_{\mathfrak{p}}$ be a (fixed) algebraic closure of $K_{\mathfrak{p}}$. Show that there is a natural bijection between the primes of L above \mathfrak{p} and the $Gal(\overline{K}_{\mathfrak{p}}/K_{\mathfrak{p}})$ -orbits of the set of K-embeddings of L into $\overline{K}_{\mathfrak{p}}$. [You may assume the equivalence between primes and finite places]. Deduce that, if $L = K(\alpha)$ and $f(T) \in K[T]$ is the minimal polynomial of α , then there is a natural bijection between the set of primes in L above \mathfrak{p} and the irreducible factors of f(T) in $K_{\mathfrak{p}}[T]$.

(b) Let $M = \mathbb{Q}(\beta)$ where β is a root of $g(T) = T^5 + 6T^3 + 252T^2 + 126$. Show that $[M:\mathbb{Q}] = 5$ and compute the number of primes of M above 3 and 7, respectively.

UNIVERSITY OF

3

If E is a number field, we let Cl_E denote the class group of E and $h_E = \#Cl_E$ denote the class number.

(a) Let $K = \mathbb{Q}(\sqrt{-59})$ and let L be the splitting field over \mathbb{Q} of $f(T) = T^3 + 2T + 1$. Show that $K \subseteq L$, and show that L/K has degree 3 and is unramified everywhere. Deduce that $h_K > 1$. [You may assume that -28 is a simple root of $T^3 + 2T + 1$ in \mathbb{F}_{59} .]

(b) Let M/L be a finite extension of number fields. Assume that L has no real places, and that there is a prime \mathfrak{p} of L which is totally ramified in M (i.e. there is a unique prime \mathfrak{q} in M above \mathfrak{p} , and $\mathfrak{p}\mathcal{O}_M = \mathfrak{q}^{[M:L]}$). Show that h_L divides h_M .

(c) Show that there are infinitely many cyclotomic fields $\mathbb{Q}(\zeta_n)$ whose ring of integers is not a principal ideal domain. [You may use results about cyclotomic fields from lectures, provided that you clearly state what you use.]

[Throughout this question, you may use any results on Hilbert class fields, provided you clearly state what you use.]

$\mathbf{4}$

(a) Let L/K be a finite Galois extension of local fields with Galois group G = Gal(L/K). Define the ramification groups $G_s = G_s(L/K)$ of L/K in the lower numbering, and then define the upper numbering of the ramification groups (in both cases for all non-negative real numbers).

Assume now that $\mathcal{O}_L = \mathcal{O}_K[\alpha]$ and let $f(T) \in \mathcal{O}_K[T]$ be the minimal polynomial of α . Let v_L be the normalised valuation on L. Show that

$$v_L(f'(\alpha)) = \sum_{1 \neq \sigma \in G} v_L(\sigma(\alpha) - \alpha) = \sum_{s \in \mathbb{Z}_{\geq 0}} (\#G_s - 1).$$

(b) Let M be the splitting field of $g(T) = T^3 - 3T + 3$ over \mathbb{Q}_3 . Compute the Galois group and the ramification groups in the lower numbering (for all non-negative integers only) of M/\mathbb{Q}_3 . [You may use that $\sqrt{-5} \in \mathbb{Q}_3$.]

[In both parts of the question you may use results from lectures on ramification groups and totally ramified extensions, provided that you clearly state what you use.]

UNIVERSITY OF

 $\mathbf{5}$

Let L/K be a finite extension of number fields, and let M/K be the Galois closure of L/K, with Galois group G = Gal(M/K). Let \mathfrak{p} be a prime of K and let \mathfrak{P} be a prime of M lying above \mathfrak{p} .

4

(a) Define the decomposition group $D_{\mathfrak{P}|\mathfrak{p}} \subseteq G$. Show that there is a natural bijection between the primes of L above \mathfrak{p} and the double coset space $H \setminus G/D_{\mathfrak{P}|\mathfrak{p}}$, where H = Gal(M/L).

(b) Show that \mathfrak{p} is totally split in L if and only if it is totally split in M.

END OF PAPER