MATHEMATICAL TRIPOS Part III

Thursday, 7 June, 2018 $\quad 1:30~\mathrm{pm}$ to $4:30~\mathrm{pm}$

PAPER 121

TOPICS IN SET THEORY

Attempt **ALL** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

 $\mathbf{2}$

- (i) Let $M \subseteq N$ be sets. State the Tarski-Vaught criterion that guarantees that (M, \in) is an elementary substructure of (N, \in) . (No proof needed.)
- (ii) State the Mostowski Collapsing Theorem for a set M with a relation $E \subseteq M \times M$. (No proof needed.)
- (iii) Give definitions of the notions of *inaccessible cardinal* and *worldly cardinal*.
- (iv) Let $M \subseteq N$ be sets and let φ be a formula in n free variables. Give definitions of the notions
 - (a) φ is downwards absolute between (M, \in) and (N, \in) ,
 - (b) φ is upwards absolute between (M, \in) and (N, \in) , and
 - (c) φ is absolute between (M, \in) and (N, \in) .
- (v) Assume that κ is a worldly cardinal. Construct transitive set models (M, \in) and (N, \in) of ZFC such that
 - (a) $M \subseteq N$,
 - (b) the set M is countable; and
 - (c) the set N has cardinality \aleph_1 and for all countable ordinals $\alpha, \alpha \in N$, and $(N, \in) \models \alpha$ is a countable ordinal".

Prove that your models have these properties.

- (vi) Assume that κ is a worldly cardinal and use the sets M and N constructed in (v). Give concrete examples of formulas φ_1 , φ_2 , and φ_3 such that
 - (a) φ_1 is absolute between (M, \in) and (N, \in) ,
 - (b) φ_2 is downwards absolute but not upwards absolute between (M, \in) and (N, \in) , and
 - (c) φ_3 is neither downwards nor upwards absolute between (M, \in) and (N, \in) .

Prove that your formulas have these properties.

 $\mathbf{2}$

(i) Define the constructible hierarchy (\mathbf{L}_{α} ; $\alpha \in \text{Ord}$). (You may assume that for each set A and each natural number n, the set Def(A, n) of internally definable subsets of A^n is already defined.)

3

- (ii) Prove that
 - (a) for all ordinals α , \mathbf{L}_{α} is transitive,
 - (b) for all ordinals $\alpha \leq \beta$, $\mathbf{L}_{\alpha} \subseteq \mathbf{L}_{\beta}$, and
 - (c) for all ordinals α , $\mathbf{L}_{\alpha} \cap \operatorname{Ord} = \alpha$.
- (iii) Assume $\mathbf{V}=\mathbf{L}$ and show that if M is any uncountable transitive set model of ZFC and α is a countable ordinal, then $(M, \in) \models ``\alpha$ is countable''.
- (iv) We write NC for the statement " \aleph_1^L is countable". Assume that ZFC + NC is consistent and prove that ZFC + NC + GCH is consistent.

3

In this question, M is a countable transitive model of ZFC, $(\mathbb{P}, \leq, \mathbf{1}) \in M$ is a partial order, and G is \mathbb{P} -generic over M.

4

- (i) Define a name $\tau \in M^{\mathbb{P}}$ such that $\operatorname{val}(\tau, G) = \mathbb{P} \setminus G$ and give a proof of this fact.
- (ii) Let φ a formula of the forcing language $\mathcal{L}_{\in}(M^{\mathbb{P}})$ with one free variable x and assume that for any name $\sigma \in M^{\mathbb{P}}$, the following equivalence is true:

 $M[G] \models \varphi[\frac{\sigma}{x}] \iff \text{ there is } p \in G \text{ such that } (p \Vdash^* \varphi[\frac{\sigma}{x}])^M.$

Show that the following are equivalent:

- (a) $M[G] \models \exists x \varphi$ and
- (b) there is a $p \in G$ such that $(p \Vdash^* \exists x \varphi)^M$.
- (iii) Define what a Δ -system is and state the Δ -system lemma. (No proof needed.)
- (iv) (a) Define what it means for a partial order $(\mathbb{P}, \leq, 1)$ to preserve cardinals.
 - (b) Define what it means for a partial order $(\mathbb{P}, \leq, 1)$ to have the countable chain condition.
 - (c) Prove that every partial order with the countable chain condition preserves cardinals.
- (v) Let $f : \mathbb{N} \to \mathbb{N}$ a function. We say that f bounds M if for every $g \in M$ such that $g : \mathbb{N} \to \mathbb{N}$ there are infinitely many numbers k such that g(k) < f(k).

Inside M, define $\mathbb{P} := \{(n, s, A); n \in \mathbb{N}, s \text{ is a partial function with dom}(s) = n, ran(s) \subseteq \mathbb{N}$, and $A \subseteq \mathbb{N}$ is infinite} with $(n, s, A) \leq (m, t, B)$ if $n \geq m, s \supseteq t, A \subseteq B$, and $\{s(i); m \leq i < n\} \subseteq B$.

Assume that G is \mathbb{P} -generic over M and prove that there is a function f that bounds M.

END OF PAPER