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1 State the Yoneda Lemma. Deduce that representable functors are projective in
[C,Set], and that if C is small then any F : C → Set is an epimorphic image of a (small)
coproduct of representables.

A functor F : C → Set is called a monofunctor if F (f) is injective for every
f ∈ mor C. If C is a small category, show that the following conditions are equivalent:

(a) Every morphism of C is monic.

(b) Every representable functor C → Set is a monofunctor,

(c) Every functor C → Set is an epimorphic image of a monofunctor.

Under what conditions on C is every functor C → Set a monofunctor? Justify your
answer.

[You may assume the result that α : F → G is an epimorphism in [C,Set] iff each

αA : FA → GA is surjective. For the last part, you may wish to consider the pushout of

C (B,−)
C (f,−)

> C (A,−)

∨

C (f,−)

C (A,−)

where f : A → B is a morphism of C.]

2 (i) A functor F : C → D is called final if, for each object B of D, the arrow category
(B ↓ F ) is (nonempty and) connected. If F is final, show that for any G : D → E each cone
under GF has a unique extension to a cone under G, and deduce that if E has colimits of
shape C then it has colimits of shape D.

(ii) F : C → D is called a discrete fibration if, given A ∈ ob C and f : B → FA in D,
where B may depend on the choice of f , there is a unique f : B → A in C with Ff = f .
Given a commutative square

C
F

> D

∨

G

∨

H

E
K

> F

where G is final and H is a discrete fibration, show that there is a unique L : E → D with
HL = K and LG = F .
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3 (i) Explain what is meant by a reflexive (parallel) pair of morphisms in a category,
and show that coequalizers of reflexive pairs exist in any category with pushouts. Show also
that arbitrary finite colimits may be constructed from finite coproducts and coequalizers
of reflexive pairs.

(ii) Let f, g : A ⇉ B be a reflexive pair in an additive category C. Show that, for
any C ∈ ob C, there is a groupoid G whose objects (resp. morphisms) are the elements of
C (C,B) (resp. C (C,A)), with domain and codomain maps given by composition with f

and g respectively. [Hint: the composite of a : u → v and b : v → w in G is a − rv + b,

where r is a common splitting for f and g.]

(iii) By considering the submonoid {(m,n) | m 6 n 6 2m} of N× N, or otherwise,
show that the result in (ii) may fail if we replace ‘additive’ by ‘semi-additive’.

4 (i) Explain what is meant by a monad on a category C. Define the Kleisli category
CT associated with a monad T on C, and sketch the proof that there is an adjunction
C ⇄ CT which is initial in the category of adjunctions inducing T. [You should verify that

CT is a category and that the mappings you propose are functors, but you need not verify

the adjunction in detail.]

(ii) State a condition on an arbitrary adjunction C ⇄ D for the Kleisli comparison
functor CT → D to be part of an equivalence of categories. Deduce that if T is idempotent,
then the comparison from CT to the Eilenberg–Moore category CT is part of an equivalence.

(iii) LetM be the monoid of order-preserving maps N → N, considered as a category
with one object. Let T : M → M be the functor defined on morphisms by Tf(0) = 0 and
Tf(n) = f(n − 1) + 1 for n > 0. Show that T carries a monad structure which is not
idempotent, but for which the comparison MT → MT is an isomorphism.

5 (i) Explain what is meant by a cartesian closed category. Show that the functor
category [C,Set] is cartesian closed for any small category C. [You may use the Special

Adjoint Functor Theorem, provided you state it precisely.]

(ii) An object A of a cartesian closed category is said to be tiny if the right adjoint
[A,−] of (−) × A itself has a right adjoint. Show that finite products of tiny objects are
tiny.

(iii) If C has binary coproducts, show that the functor C (A,−) is tiny in [C,Set],
for any A ∈ ob C.

(iv) If C is Cauchy-complete and has an initial object, show that any tiny object
of [C,Set] is representable. [You may assume the result that the irreducible projectives in

[C,Set] — that is, those F such that [C,Set] (F,−) preserves coproducts and epimorphisms

— are exactly the representable functors.]
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6 (i) Let C be a semi-additive category with finite products and coproducts.
Show that, for any finite family of objects (A1, A2, . . . , An), the canonical morphism
c :

∑n
i=1

Ai →
∏n

i=1
Ai (defined by πicνj = δij) is an isomorphism.

(ii) Now suppose that C has countable products and coproducts, and that the
corresponding morphism

∑
∞

i=1
Ai →

∏
∞

i=1
Ai is always an isomorphism. Show that, for

every object A, there exists z : A → A satisfying z + 1A = z. Deduce that if C is additive
it must be degenerate (i.e. equivalent to the trivial category 1).

(iii) By considering the category CSLat of complete semilattices (that is, posets
with arbitrary joins) and join-preserving maps, show that the word ‘additive’ cannot be
weakened to ‘semi-additive’ in the last sentence of (ii).

END OF PAPER
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