MATHEMATICAL TRIPOS Part III

Monday, 11 June, 2018 1:30 pm to 4:30 pm

PAPER 118

COMPLEX MANIFOLDS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

2

1 (a) Let M be a complex manifold. Define $\mathcal{A}^{p,q}(M)$, the space of global forms of type (p,q). Define the operators $\partial : \mathcal{A}^{p,q}(M) \to \mathcal{A}^{p+1,q}(M)$ and $\overline{\partial} : \mathcal{A}^{p,q}(M) \to \mathcal{A}^{p,q+1}(M)$.

(b) Let \mathcal{P}^n be an *n*-dimensional polydisc. Consider $\alpha \in \mathcal{A}^{p,q}(\mathcal{P}^n)$, $p \ge 1$, such that $\partial \alpha = 0$. Show that there exists $\beta \in \mathcal{A}^{p-1,q}(\mathcal{P}^n)$ with $\partial \beta = \alpha$.

[You may use the $\bar{\partial}$ -Poincaré lemma which states that if \mathcal{P}^n is a polydisc then the Dolbeault cohomology $H^{p,q}_{\bar{\partial}}(\mathcal{P}^n) = 0$ for all $q \ge 1$.]

(c) The *Bott-Chern cohomology* group of M is defined to be

$$H^{p,q}_{BC}(M) := \frac{\{\alpha \in \mathcal{A}^{p,q}(M), d\alpha = 0\}}{\partial \bar{\partial} \mathcal{A}^{p-1,q-1}(M)}.$$

Prove that when $M = \mathcal{P}^n$, $H^{p,q}_{BC}(M) = 0$ when $p, q \ge 1$.

[You may use the $\bar{\partial}$ -Poincaré lemma as well as the smooth Poincaré lemma, which states that the de-Rham cohomology $H^k_{dR}(\mathcal{P}^n) = 0$ for all $k \ge 1$.]

(d) Let M be a compact Kähler manifold. Construct an isomorphism

$$\phi: H^{p,q}_{BC}(M) \cong H^{p,q}_{\bar{\partial}}(M).$$

UNIVERSITY OF

2 (a) Let X be a topological space and \mathcal{F} a sheaf of abelian groups. Define the *sheaf* cohomology groups $H^i(X, \mathcal{F})$.

(b) Let X be a smooth manifold and let $\underline{\mathbb{Z}}$ denote the constant sheaf on X wth \mathbb{Z} coefficients. Construct a bijection between the set of isomorphism classes of C^{∞} complex line bundles over X and the sheaf cohomology group $H^2(X,\underline{\mathbb{Z}})$.

[When answering this question and parts (d) and (e) below, you may assume any result stated in the lectures.]

(c) Fix a point p in a topological space X. Consider the presheaf \mathbb{C}_p which assigns

$$\mathbb{C}_p(U) := \begin{cases} \mathbb{C}, \ p \in U \\ 0, \ p \notin U \end{cases}$$

with restriction maps $\mathbb{C}_p(U) \to \mathbb{C}_p(V)$ being the identity whenever both groups are \mathbb{C} . Verify that \mathbb{C}_p satisfies the sheaf axioms.

(d) Fix an elliptic curve $X = \mathbb{C}/\Lambda$ and let p be a point in X. Let \mathcal{O}_X denote the sheaf of holomorphic functions and consider the canonical morphism of sheaves

$$\mathcal{O}_X \xrightarrow{ev_p} \mathbb{C}_p$$

given by evaluation at the point p. Set $\mathcal{I}_p := \ker(ev_p)$ to be the sheaf kernel of the morphism ev_p . Calculate the sheaf cohomology groups $H^i(X, \mathcal{I}_p)$.

(e) Define the holomorphic line bundles $\mathcal{O}(d)$, $d \in \mathbb{Z}$, over an *r*-dimensional complex projective space $\mathbb{C}P^r$. Calculate the dimension of $H^0(\mathbb{C}P^1, \mathcal{O}(d))$ as a vector space over \mathbb{C} .

3 (a) Let M be a complex manifold and let \mathcal{L} denote a holomorphic line bundle over M. Let h denote a Hermitian metric on \mathcal{L} . Define the fundamental (1,1) form $\omega_{(\mathcal{L},h)}$ associated to (\mathcal{L},h) [You need not justify that the construction is well-defined]. Define what it means for h to be a positive Hermitian metric.

(b) Let M be a compact complex manifold of dimension $n \ge 1$. Suppose M admits a holomorphic embedding $i : M \to \mathbb{C}P^r$ into a projective space. Set $\mathcal{L} = i^*(\mathcal{O}(1))$ and let K_M denote the canonical holomorphic line bundle $K_M := \Lambda^n \Omega_M$. Show that $H^n(M, \mathcal{L} \otimes K_M) = 0$.

[Your solution should not make use of the Kodaira-Nakano vanishing theorem.]

(c) Let M be a compact Kähler manifold satisfying $H^2(M, \mathcal{O}_M) = 0$. Show that M admits a holomorphic embedding into a projective space.

(d) We say that a three-dimensional compact Kähler manifold M is a *Calabi-Yau* threefold if $K_M \cong \mathcal{O}_M$ and $H^1(M, \mathbb{C}) = 0$. Show that any Calabi-Yau threefold admits a holomorphic embedding into a projective space.

CAMBRIDGE

4 (a) Let M be a Kähler manifold and let $\mathcal{A}_{M,\mathbb{C}}^k$ denote the space of globally defined complexified C^{∞} differential k-forms. Define the operators $L : \mathcal{A}_{M,\mathbb{C}}^k \to \mathcal{A}_{M,\mathbb{C}}^{k+2}$ and $\Lambda : \mathcal{A}_{M,\mathbb{C}}^k \to \mathcal{A}_{M,\mathbb{C}}^{k-2}$. Suppose that M is also compact. Show that L and Λ induce welldefined operators $L : H^k(M,\mathbb{C}) \to H^{k+2}(M,\mathbb{C})$ and $\Lambda : H^k(M,\mathbb{C}) \to H^{k-2}(M,\mathbb{C})$.

4

(b) Let M be an n-dimensional compact Kähler manifold. Recall that an element $\alpha \in H^n(M, \mathbb{C})$ is said to be primitive if $L(\alpha) = 0$ in $H^{n+2}(M, \mathbb{C})$. Show that $\alpha \in H^n(M, \mathbb{C})$ is primitive if and only if $\Lambda(\alpha) = 0 \in H^{n-2}(M, \mathbb{C})$.

[You may assume without proof any theorem or identity stated during lecture.]

(c) Assume now that M is as in part (b) and that n = 2. Let α be a primitive (1, 1) form i.e. $L(\alpha) = 0 \in \mathcal{A}_{M,\mathbb{C}}^4$. Show that $*\alpha = -\alpha$.

(d) Let M be as part (c) and denote by Q the Poincaré pairing

$$Q: H^2(M,\mathbb{R}) \otimes_{\mathbb{R}} H^2(M,\mathbb{R}) \to \mathbb{R}$$

Show that if there exists a real two-dimensional subspace $V \subset H^2(M,\mathbb{R})$ on which $Q_{|V}: V \otimes_{\mathbb{R}} V \to \mathbb{R}$ vanishes, then $H^2(M, \mathcal{O}_M) \neq 0$.

$\mathbf{5}$

(a) Let M be a compact Kähler manifold and let d denote the de Rham differential on complexified differential forms

$$d: \mathcal{A}_{M,\mathbb{C}}^k \to \mathcal{A}_{M,\mathbb{C}}^{k+1}.$$

Show that any holomorphic p-form $\alpha \in \Gamma(M, \Omega_M^p)$ is d-closed i.e. $d(\alpha) = 0 \in \mathcal{A}_{M,\mathbb{C}}^{p+1}$.

(b) Let M be a complex manifold of complex dimension two and let $\underline{\mathbb{C}}$ denote the constant sheaf with \mathbb{C} coefficients. Prove that there is an exact sequence of sheaves

$$0 \to \underline{\mathbb{C}} \to \mathcal{O}_M \xrightarrow{\partial} \Omega^1_M \xrightarrow{\partial} \Omega^2_M \to 0.$$

(c) Let M be a compact complex manifold of complex dimension two. Show that any holomorphic form $\alpha \in \Gamma(M, \Omega_M^p)$ is *d*-closed.

(d) Let M be as in part (c). Construct an exact sequence:

$$0 \to H^0(M, \Omega^1_M) \to H^1(M, \mathbb{C}) \to H^1(M, \mathcal{O}_M).$$

END OF PAPER