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1 (a) Let M be a complex manifold. Define Ap,q(M), the space of global forms of type
(p, q). Define the operators ∂ : Ap,q(M) → Ap+1,q(M) and ∂̄ : Ap,q(M) → Ap,q+1(M).

(b) Let Pn be an n-dimensional polydisc. Consider α ∈ Ap,q(Pn), p > 1, such that
∂α = 0. Show that there exists β ∈ Ap−1,q(Pn) with ∂β = α.

[You may use the ∂̄-Poincaré lemma which states that if Pn is a polydisc then the
Dolbeault cohomology Hp,q

∂̄
(Pn) = 0 for all q > 1.]

(c) The Bott-Chern cohomology group of M is defined to be

Hp,q
BC(M) :=

{α ∈ Ap,q(M), dα = 0}

∂∂̄Ap−1,q−1(M)
.

Prove that when M = Pn, Hp,q
BC(M) = 0 when p, q > 1.

[You may use the ∂̄-Poincaré lemma as well as the smooth Poincaré lemma, which
states that the de-Rham cohomology Hk

dR(P
n) = 0 for all k > 1.]

(d) Let M be a compact Kähler manifold. Construct an isomorphism

φ : Hp,q
BC(M) ∼= Hp,q

∂̄
(M).
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2 (a) Let X be a topological space and F a sheaf of abelian groups. Define the sheaf
cohomology groups H i(X,F).

(b) Let X be a smooth manifold and let Z denote the constant sheaf on X wth Z

coefficients. Construct a bijection between the set of isomorphism classes of C∞ complex
line bundles over X and the sheaf cohomology group H2(X,Z).

[When answering this question and parts (d) and (e) below, you may assume any
result stated in the lectures.]

(c) Fix a point p in a topological space X. Consider the presheaf Cp which assigns

Cp(U) :=

{

C, p ∈ U

0, p /∈ U

with restriction maps Cp(U) → Cp(V ) being the identity whenever both groups are C.
Verify that Cp satisfies the sheaf axioms.

(d) Fix an elliptic curve X = C/Λ and let p be a point in X. Let OX denote the
sheaf of holomorphic functions and consider the canonical morphism of sheaves

OX
evp
−−→ Cp

given by evaluation at the point p. Set Ip := ker(evp) to be the sheaf kernel of the
morphism evp. Calculate the sheaf cohomology groups H i(X,Ip).

(e) Define the holomorphic line bundles O(d), d ∈ Z, over an r-dimensional complex
projective space CP r. Calculate the dimension of H0(CP 1,O(d)) as a vector space over
C.

3 (a) Let M be a complex manifold and let L denote a holomorphic line bundle over
M . Let h denote a Hermitian metric on L. Define the fundamental (1, 1) form ω(L,h)

associated to (L, h) [You need not justify that the construction is well-defined]. Define
what it means for h to be a positive Hermitian metric.

(b) Let M be a compact complex manifold of dimension n > 1. Suppose M admits
a holomorphic embedding i : M → CP r into a projective space. Set L = i∗(O(1))
and let KM denote the canonical holomorphic line bundle KM := ΛnΩM . Show that
Hn(M,L ⊗KM ) = 0.

[Your solution should not make use of the Kodaira-Nakano vanishing theorem.]

(c) Let M be a compact Kähler manifold satisfying H2(M,OM ) = 0. Show that M
admits a holomorphic embedding into a projective space.

(d) We say that a three-dimensional compact Kähler manifold M is a Calabi-Yau
threefold if KM

∼= OM and H1(M,C) = 0. Show that any Calabi-Yau threefold admits a
holomorphic embedding into a projective space.
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4 (a) Let M be a Kähler manifold and let Ak
M,C denote the space of globally defined

complexified C∞ differential k-forms. Define the operators L : Ak
M,C → Ak+2

M,C and

Λ : Ak
M,C → Ak−2

M,C. Suppose that M is also compact. Show that L and Λ induce well-

defined operators L : Hk(M,C) → Hk+2(M,C) and Λ : Hk(M,C) → Hk−2(M,C).

(b) Let M be an n-dimensional compact Kähler manifold. Recall that an element
α ∈ Hn(M,C) is said to be primitive if L(α) = 0 inHn+2(M,C). Show that α ∈ Hn(M,C)
is primitive if and only if Λ(α) = 0 ∈ Hn−2(M,C).

[You may assume without proof any theorem or identity stated during lecture.]

(c) Assume now that M is as in part (b) and that n = 2. Let α be a primitive (1, 1)
form i.e. L(α) = 0 ∈ A4

M,C. Show that ∗α = −α.

(d) Let M be as part (c) and denote by Q the Poincaré pairing

Q : H2(M,R) ⊗R H2(M,R) → R

Show that if there exists a real two-dimensional subspace V ⊂ H2(M,R) on which
Q|V : V ⊗R V → R vanishes, then H2(M,OM ) 6= 0.

5

(a) Let M be a compact Kähler manifold and let d denote the de Rham differential
on complexified differential forms

d : Ak
M,C → Ak+1

M,C.

Show that any holomorphic p-form α ∈ Γ(M,Ωp
M ) is d-closed i.e. d(α) = 0 ∈ Ap+1

M,C.

(b) Let M be a complex manifold of complex dimension two and let C denote the
constant sheaf with C coefficients. Prove that there is an exact sequence of sheaves

0 → C → OM
∂
−→ Ω1

M
∂
−→ Ω2

M → 0.

(c) Let M be a compact complex manifold of complex dimension two. Show that
any holomorphic form α ∈ Γ(M,Ωp

M ) is d-closed.

(d) Let M be as in part (c). Construct an exact sequence:

0 → H0(M,Ω1
M ) → H1(M,C) → H1(M,OM ).
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