MATHEMATICAL TRIPOS Part III

Monday, 4 June, 2018 1:30 pm to 4:30 pm

PAPER 115

DIFFERENTIAL GEOMETRY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let M be a smooth manifold. Define the *tangent bundle* of M, and the *Lie bracket* [X, Y] of vector fields $X, Y \in \Gamma(TM)$ on M. Prove that [X, Y] = 0 if and only if the flows defined by X and Y commute.

Let M^{n+1} be a compact (n + 1)-dimensional manifold with boundary ∂M . Fix a nowhere-zero volume form $\omega \in \Omega^{n+1}(M)$. Assume that the natural map $H^1_{dR}(M) \to H^1_{dR}(\partial M)$ is injective. Suppose that $X_1, \ldots, X_n \in \Gamma(TM)$ are vector fields on M which

- 1. are everywhere tangent to the boundary along $TM|_{\partial M}$;
- 2. are pointwise linearly independent;
- 3. satisfy $[X_i, X_j] = 0$ for each i, j;
- 4. satisfy $\mathcal{L}_{X_i}(\omega) = 0$.

Prove that the 1-form $\eta = \iota_{X_1} \dots \iota_{X_n}(\omega) \in \Omega^1(M)$ is exact, so $\eta = df$ for some smooth $f: M \to \mathbb{R}$. By considering critical points of f, or otherwise, prove that ∂M cannot be connected. [You may use without proof the relation $[\mathcal{L}_X, \iota_Y](\alpha) = \iota_{[X,Y]}(\alpha)$ for vector fields X and Y and differential forms α .]

Deduce that the vector fields $\partial/\partial \theta_1$ and $\partial/\partial \theta_2$ on the two-dimensional torus $S^1 \times S^1$ do not extend to the solid torus $S^1 \times D^2$ as pointwise-independent commuting volume-preserving vector fields, for any choice of volume form.

UNIVERSITY OF

 $\mathbf{2}$

Let M be a smooth manifold, and $\mathcal{D} \subset TM$ a smooth subbundle of the tangent bundle of M. Define what it means for \mathcal{D} to be *involutive* and what it means for \mathcal{D} to be *integrable*.

State and prove the Frobenius integrability theorem.

Let M be the three-dimensional Lie group of upper triangular matrices

$$M = \left\{ \begin{pmatrix} 1 & x_1 & x_3 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix} : x_i \in \mathbb{R} \text{ for } i = 1, 2, 3 \right\}.$$

We identify $M \cong \mathbb{R}^3$ with co-ordinates (x_1, x_2, x_3) in the obvious way, and hence identify $T_{id}M \cong \mathbb{R}^3$ where id = (0, 0, 0) is the identity element of M.

(i) Compute the left-invariant vector fields E_i associated to the standard basis $\{e_1, e_2, e_3\}$ of $T_{id}M$, and prove that the distribution $\mathcal{D} = \langle E_1, E_2 \rangle \subset TM$ is not involutive.

(ii) Let $\gamma : [0,1] \to M$ be a smooth curve with $\gamma'(t) = \alpha(t)E_1 + \beta(t)E_2 \in \mathcal{D}_{\gamma(t)}$ for every t. Find an expression for $\gamma(t) = (x(t), y(t), z(t))$ in terms of integrals of the functions α and β .

(iii) Let $p = (P_x, P_y, P_z) \in M$. By writing $\alpha(t) = P_x + af(t)$ and $\beta(t) = P_y + bf(t)$, for appropriate constants a, b and for a suitable smooth function f, or otherwise, deduce there is a curve $\gamma : [0, 1] \to M$ with $\gamma(0) = \text{id}$ and $\gamma(1) = p$ and for which $\gamma'(t) \in \mathcal{D}_{\gamma(t)}$ for every t. [You may assume the existence of a smooth function $f : [0, 1] \to \mathbb{R}$ with the property that $\int_0^1 f(t)dt = 0$; $\int_0^1 tf(t)dt = 0$; $\int_0^1 \int_0^s f(t)f(s)dsdt \neq 0$.]

Explain briefly why the property in (iii) demonstrates the non-integrability of \mathcal{D} .

CAMBRIDGE

3

Let M be a smooth manifold and $\alpha \in \Omega^1(M)$ a differential one-form. For vector fields X, Y on M, prove that

4

$$d\alpha(X,Y) = X \cdot \alpha(Y) - Y \cdot \alpha(X) - \alpha([X,Y]).$$

Let $E \to M$ be a smooth vector bundle. Define the *curvature* F_A of a connection A on E, and explain why $F_A \in \Omega^2(\text{End}(E))$. Prove that

$$F_A(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]} \in \operatorname{End}(E)$$

where you should define the operator $\nabla_{\bullet} : \Gamma(E) \to \Gamma(E)$.

Define the *induced connection* $A^* \otimes A$ on $\operatorname{End}(E)$. If $\tilde{\nabla}_{\bullet}$ denotes the corresponding operator on $\Gamma(\operatorname{End}(E))$, and if $\phi \in \operatorname{End}(E)$ and $e \in E$, prove that

$$([\tilde{\nabla}_X, \tilde{\nabla}_Y]\phi)(e) = [\nabla_X, \nabla_Y](\phi(e)) - \phi([\nabla_X, \nabla_Y]e) \in E.$$

Deduce that $F_{A^*\otimes A} = 0$ if and only if $F_A = \omega \otimes id$, for some $\omega \in \Omega^2(M)$. [You may assume that a matrix $M \in \operatorname{Mat}_n(\mathbb{R})$ which commutes with all elements of $\operatorname{Mat}_n(\mathbb{R})$ is a scalar multiple of the identity.]

$\mathbf{4}$

Let (M, g) be a Riemannian manifold. Define the energy $E(\gamma)$ of a smooth curve $\gamma : [a, b] \to M$. State and prove a formula for the second variation E''(0) of the energy, where $E(s) = E(\gamma_s)$ and $\gamma_s(t)$ is a family of curves for which $\gamma_0(t)$ is a geodesic.

Suppose now M is closed, oriented and of even dimension, and the sectional curvatures $K(X,Y) = \langle R(X,Y)Y,X\rangle_g$ of M are all strictly positive, for arbitrary non-zero linearly independent vector fields X, Y on M. Let $\gamma = \gamma_0 : S^1 \to M$ be a non-constant closed geodesic on M. Prove that parallel transport around γ fixes a vector v in the hyperplane orthogonal to the tangent vector $\gamma'(p) \in T_{\gamma(p)}M$. By considering an appropriate variation $\{\gamma_s\}_{s\in(-\varepsilon,\varepsilon)}$, show that γ cannot be globally length-minimizing in its smooth isotopy class.

END OF PAPER