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Let M be a smooth manifold. Define the tangent bundle of M , and the Lie bracket

[X,Y ] of vector fields X,Y ∈ Γ(TM) on M . Prove that [X,Y ] = 0 if and only if the flows
defined by X and Y commute.

Let Mn+1 be a compact (n + 1)-dimensional manifold with boundary ∂M . Fix
a nowhere-zero volume form ω ∈ Ωn+1(M). Assume that the natural map H1

dR(M) →
H1

dR(∂M) is injective. Suppose that X1, . . . ,Xn ∈ Γ(TM) are vector fields on M which

1. are everywhere tangent to the boundary along TM |∂M ;

2. are pointwise linearly independent;

3. satisfy [Xi,Xj ] = 0 for each i, j;

4. satisfy LXi
(ω) = 0.

Prove that the 1-form η = ιX1
. . . ιXn

(ω) ∈ Ω1(M) is exact, so η = df for some smooth
f : M → R. By considering critical points of f , or otherwise, prove that ∂M cannot be
connected. [You may use without proof the relation [LX , ιY ](α) = ι[X,Y ](α) for vector
fields X and Y and differential forms α.]

Deduce that the vector fields ∂/∂θ1 and ∂/∂θ2 on the two-dimensional torus S1×S1

do not extend to the solid torus S1 × D2 as pointwise-independent commuting volume-
preserving vector fields, for any choice of volume form.
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Let M be a smooth manifold, and D ⊂ TM a smooth subbundle of the tangent
bundle of M . Define what it means for D to be involutive and what it means for D to be
integrable.

State and prove the Frobenius integrability theorem.

Let M be the three-dimensional Lie group of upper triangular matrices

M =











1 x1 x3
0 1 x2
0 0 1



 : xi ∈ R for i = 1, 2, 3







.

We identify M ∼= R
3 with co-ordinates (x1, x2, x3) in the obvious way, and hence identify

TidM ∼= R
3 where id = (0, 0, 0) is the identity element of M .

(i) Compute the left-invariant vector fields Ei associated to the standard basis
{e1, e2, e3} of TidM , and prove that the distribution D = 〈E1, E2〉 ⊂ TM is not involutive.

(ii) Let γ : [0, 1] → M be a smooth curve with γ′(t) = α(t)E1 + β(t)E2 ∈ Dγ(t) for
every t. Find an expression for γ(t) = (x(t), y(t), z(t)) in terms of integrals of the functions
α and β.

(iii) Let p = (Px, Py, Pz) ∈ M . By writing α(t) = Px + af(t) and β(t) = Py + bf(t),
for appropriate constants a, b and for a suitable smooth function f , or otherwise, deduce
there is a curve γ : [0, 1] → M with γ(0) = id and γ(1) = p and for which γ′(t) ∈ Dγ(t)

for every t. [You may assume the existence of a smooth function f : [0, 1] → R with the
property that

∫ 1
0 f(t)dt = 0;

∫ 1
0 tf(t)dt = 0;

∫ 1
0

∫ s

0 f(t)f(s)dsdt 6= 0.]

Explain briefly why the property in (iii) demonstrates the non-integrability of D.
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Let M be a smooth manifold and α ∈ Ω1(M) a differential one-form. For vector
fields X,Y on M , prove that

dα(X,Y ) = X · α(Y )− Y · α(X) − α([X,Y ]).

Let E → M be a smooth vector bundle. Define the curvature FA of a connection A on E,
and explain why FA ∈ Ω2(End(E)). Prove that

FA(X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ] ∈ End(E)

where you should define the operator ∇• : Γ(E) → Γ(E).

Define the induced connection A∗ ⊗A on End(E). If ∇̃• denotes the corresponding
operator on Γ(End(E)), and if φ ∈ End(E) and e ∈ E, prove that

([∇̃X , ∇̃Y ]φ)(e) = [∇X ,∇Y ](φ(e)) − φ([∇X ,∇Y ]e) ∈ E.

Deduce that FA∗⊗A = 0 if and only if FA = ω⊗ id, for some ω ∈ Ω2(M). [You may assume
that a matrix M ∈ Matn(R) which commutes with all elements of Matn(R) is a scalar
multiple of the identity.]

4

Let (M,g) be a Riemannian manifold. Define the energy E(γ) of a smooth curve
γ : [a, b] → M . State and prove a formula for the second variation E′′(0) of the energy,
where E(s) = E(γs) and γs(t) is a family of curves for which γ0(t) is a geodesic.

Suppose now M is closed, oriented and of even dimension, and the sectional
curvatures K(X,Y ) = 〈R(X,Y )Y,X〉g of M are all strictly positive, for arbitrary non-
zero linearly independent vector fields X,Y on M . Let γ = γ0 : S1 → M be a non-
constant closed geodesic on M . Prove that parallel transport around γ fixes a vector v
in the hyperplane orthogonal to the tangent vector γ′(p) ∈ Tγ(p)M . By considering an
appropriate variation {γs}s∈(−ε,ε), show that γ cannot be globally length-minimizing in
its smooth isotopy class.
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