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1 Define what it means for two chain maps to be chain homotopic. Show that chain
homotopic chain maps induce the same map on homology.

Define S∗(∆
n) (the simplicial chain complex of the n-simplex). Check that d2 = 0.

Without assuming any results about cellular homology, show that

H∗(S∗(∆
n)) =

{
Z ∗ = 0

0 ∗ > 0
.

2 Suppose X and Y are topological spaces, and that f : X → Y is a continuous map.
Let Z = X × [0, 1]

∐
Y/ ∼, where (x1, 0) ∼ (x2, 0) for all x1, x2 ∈ X and (x, 1) ∼ f(x) for

all x ∈ X.

Show that there is a long exact sequence

· · · → H̃∗+1(Z;G) → H∗(X;G)
f∗
−→ H∗(Y ;G) → H̃∗(Z;G) → . . . .

where G is any finitely generated abelian group.

Now suppose that X and Y are finite cell complexes. Using the exact sequence
above, show that f∗ : H∗(X) → H∗(Y ) is an isomorphism if and only if f∗ : H∗(X;Z/p) →
H∗(Y ;Z/p) is an isomorphism for all primes p.

If f is a cellular map, show that Z is a finite cell complex, and express C̃cell
∗

(Z) in
terms of Ccell

∗
(X), Ccell

∗
(Y ), and the map f# : Ccell

∗
(X) → Ccell

∗
(Y ).

3 SupposeW is a compact n-manifold with nonempty boundary, and that j : W → Sn

is a smooth embedding. (In particular, this implies that j is injective, that j(∂W ) has
a tubular neighborhood, and that j(W − ∂W ) is an open subset of Sn.) Show that
H∗(S

n − j(W )) does not depend on the choice of the embedding j.

Now suppose M is a closed connected k-manifold and i : M → Sn is a smooth
embedding. Express H∗(S

n − i(M);Z/2) in terms of H∗(M ;Z/2). [Hint: use the Gysin

sequence.]
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4 If M and N are closed oriented connected n-manifolds, define the degree of a map
f : M → N . What is the degree of the the antipodal map A : Sn → Sn? Justify your
answer.

If h : S2k → S2k satisfies h = g ◦ f , where f : S2k → RP
2k and g : RP2k → S2k,

what are the possible values of deg h?

If h : S2k+1 → S2k+1 satisfies h = g ◦ f , where f : S2k+1 → RP
2k+1 and

g : RP2k+1 → S2k+1, what are the possible values of degh?

Suppose that N is a closed oriented connected n-manifold, and that f : Sn → N
has degree p, where p is prime. Show that there is some k > 0 such that pkx = 0 for all
x ∈ H∗(N) with 0 < ∗ < n.

[Hint: consider homology with coefficients in Z/q for primes q 6= p. You may assume

that a closed manifold is homotopy equivalent to a finite cell complex, so the universal

coefficient theorem applies.]

5 Let π : E → B be an n-dimensional real vector bundle. What is meant by a Z/2
Thom class for E? State the Thom Isomorphism theorem with Z/2 coefficients. Use it to
derive a Z/2 version of the Gysin sequence.

By considering the tautological bundle on RP
n, compute the ring structure of

H∗(RPn;Z/2). [You may take the groups H∗(RPn;Z/2) as given, as long as you state

them clearly.]

What is the ring structure of H∗(RPn;Z)? [You may take the groups H∗(RPn;Z)
as given, as long as you state them clearly.]
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