MATHEMATICAL TRIPOS Part III

Friday, 1 June, 2018 9:00 am to 12:00 pm

PAPER 114

ALGEBRAIC TOPOLOGY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

2

1 Define what it means for two chain maps to be *chain homotopic*. Show that chain homotopic chain maps induce the same map on homology.

Define $S_*(\Delta^n)$ (the simplicial chain complex of the *n*-simplex). Check that $d^2 = 0$. Without assuming any results about cellular homology, show that

$$H_*(S_*(\Delta^n)) = \begin{cases} \mathbb{Z} & *=0\\ 0 & *>0 \end{cases}$$

2 Suppose X and Y are topological spaces, and that $f: X \to Y$ is a continuous map. Let $Z = X \times [0,1] \coprod Y / \sim$, where $(x_1,0) \sim (x_2,0)$ for all $x_1, x_2 \in X$ and $(x,1) \sim f(x)$ for all $x \in X$.

Show that there is a long exact sequence

$$\cdots \to \widetilde{H}_{*+1}(Z;G) \to H_*(X;G) \xrightarrow{f_*} H_*(Y;G) \to \widetilde{H}_*(Z;G) \to \dots$$

where G is any finitely generated abelian group.

Now suppose that X and Y are finite cell complexes. Using the exact sequence above, show that $f_*: H_*(X) \to H_*(Y)$ is an isomorphism if and only if $f_*: H_*(X; \mathbb{Z}/p) \to H_*(Y; \mathbb{Z}/p)$ is an isomorphism for all primes p.

If f is a cellular map, show that Z is a finite cell complex, and express $\widetilde{C}^{cell}_*(Z)$ in terms of $C^{cell}_*(X), C^{cell}_*(Y)$, and the map $f_{\#}: C^{cell}_*(X) \to C^{cell}_*(Y)$.

3 Suppose W is a compact n-manifold with nonempty boundary, and that $j: W \to S^n$ is a smooth embedding. (In particular, this implies that j is injective, that $j(\partial W)$ has a tubular neighborhood, and that $j(W - \partial W)$ is an open subset of S^n .) Show that $H_*(S^n - j(W))$ does not depend on the choice of the embedding j.

Now suppose M is a closed connected k-manifold and $i: M \to S^n$ is a smooth embedding. Express $H_*(S^n - i(M); \mathbb{Z}/2)$ in terms of $H_*(M; \mathbb{Z}/2)$. [Hint: use the Gysin sequence.]

CAMBRIDGE

4 If M and N are closed oriented connected *n*-manifolds, define the *degree* of a map $f: M \to N$. What is the degree of the the antipodal map $A: S^n \to S^n$? Justify your answer.

If $h: S^{2k} \to S^{2k}$ satisfies $h = g \circ f$, where $f: S^{2k} \to \mathbb{RP}^{2k}$ and $g: \mathbb{RP}^{2k} \to S^{2k}$, what are the possible values of deg h?

If $h : S^{2k+1} \to S^{2k+1}$ satisfies $h = g \circ f$, where $f : S^{2k+1} \to \mathbb{RP}^{2k+1}$ and $g : \mathbb{RP}^{2k+1} \to S^{2k+1}$, what are the possible values of deg h?

Suppose that N is a closed oriented connected n-manifold, and that $f : S^n \to N$ has degree p, where p is prime. Show that there is some k > 0 such that $p^k x = 0$ for all $x \in H_*(N)$ with 0 < * < n.

[*Hint:* consider homology with coefficients in \mathbb{Z}/q for primes $q \neq p$. You may assume that a closed manifold is homotopy equivalent to a finite cell complex, so the universal coefficient theorem applies.]

5 Let $\pi : E \to B$ be an *n*-dimensional real vector bundle. What is meant by a $\mathbb{Z}/2$ Thom class for E? State the Thom Isomorphism theorem with $\mathbb{Z}/2$ coefficients. Use it to derive a $\mathbb{Z}/2$ version of the Gysin sequence.

By considering the tautological bundle on \mathbb{RP}^n , compute the ring structure of $H^*(\mathbb{RP}^n; \mathbb{Z}/2)$. [You may take the groups $H^*(\mathbb{RP}^n; \mathbb{Z}/2)$ as given, as long as you state them clearly.]

What is the ring structure of $H^*(\mathbb{RP}^n;\mathbb{Z})$? [You may take the groups $H^*(\mathbb{RP}^n;\mathbb{Z})$ as given, as long as you state them clearly.]

END OF PAPER