MATHEMATICAL TRIPOS Part III

Friday, 1 June, 2018 9:00 am to 11:00 am

PAPER 110

EXTREMAL GRAPH THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

State the Erdős-Stone theorem.

Let $t, r \in \mathbb{N}$ be given and let (G_n) be a sequence of graphs, such that G_n has order n and size $(1-1/r+o(1))\binom{n}{2}$. Show that if $K_{r+1}(t)$ is not a subgraph of G_n then G_n contains an r-partite subgraph H of minimum degree (1-1/r+o(1))n.

Show that if $\chi(F) = r+1$ and G is extremal for F then G itself has minimum degree (1 - 1/r + o(1))n, where n = |G|.

Let $r, s \in \mathbb{N}$ be fixed. Show that, for large n, the unique extremal graph for sK_{r+1} (s disjoint copies of K_{r+1}) is $K_{s-1} + T_r(n-s+1)$ (that is, K_{s-1} with every vertex joined to every vertex of a Turán graph on the remaining vertices).

[Hint. As usual, assign each vertex of G to the class in H in which it has fewest neighbours. Consider the cases (a) some vertex of G has more than o(n) neighbours in its own class, applying induction on s, (b) some class contains s independent edges and (c) each class has a set of 2(s-1) vertices meeting all edges in its class.]

$\mathbf{2}$

Let G be a graph of order n and let $k_p(G)$ be the number of copies of K_p in G. Let $c \in \mathbb{R}$ and let $f(G) = k_2(G) - ck_3(G)$. Show that, amongst graphs of order n, the function f(G) takes its maximum on some complete multipartite graph.

Deduce that, for $0 \leq \theta \leq 1$, if G has $(1 - \theta)k_2(T_2(n)) + \theta k_2(T_3(n))$ edges then it contains at least $\theta k_3(T_3(n))$ triangles, where $T_p(n)$ is the p-partite Turán graph of order n.

Suppose now that $n \ge 4$ is even, and that G has $n^2/4 + 1$ edges. Show that G has at least n/2 triangles.

[*Hint. Consider the case where every edge is in some triangle, and the other case.* For the latter, apply induction on n: if uv is in no triangles, how many edges can meet uv?]

3

State and prove Szemerédi's Regularity Lemma. [You may assume that if $U' \subset U$ and $W' \subset W$ satisfy $|U'| \ge (1-\delta)|U|$ and $|W'| \ge (1-\delta)|W|$ then $|d(U', W') - d(U, W)| \le 2\delta$, and also any quantitative form of the Cauchy-Schwarz inequality that you need.]

Let G be a graph of order n with $51n^2/200$ edges. Explain why there exists some c > 0 such that V(G) contains disjoint sets U_1, U_2, U_3 with $|U_i| > cn, 1 \le i \le 3$, and with each pair $(U_i, U_j), 1 \le i < j \le 3$, being 10^{-3} -uniform and having density at least 10^{-3} .

UNIVERSITY OF

 $\mathbf{4}$

Recall from the lectures that $c(t) = \inf\{c : e(G) \ge c | G | \Longrightarrow G \succ K_t\}.$

Show that there exists some constant $\beta > 0$ such that $c(t) \ge \beta t \sqrt{\log t}$ for large t.

[Standard probabilistic facts may be assumed if stated clearly.]

Show that $c(t) \leq 7t\sqrt{\log t}$ for large t.

[You may assume that, for every integer k, if $e(G) \leq 11k|G|$ then $G \succ H$ where $|H| \leq 11k + 2$ and $2\delta(H) \geq |H| + 4k - 1$.]

Show that, if $n \ge 4$ and G has n vertices and 2n - 2 edges, then $G \succ K_4$.

[Hint. Apply induction on n, considering the case where every edge lies in at least two triangles and the other case.]

Does the same statement hold with 2n - 2 replaced by 2n - 3?

END OF PAPER