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State the Erdős-Stone theorem.

Let t, r ∈ N be given and let (Gn) be a sequence of graphs, such that Gn has order n
and size (1−1/r+o(1))

(

n

2

)

. Show that if Kr+1(t) is not a subgraph of Gn then Gn contains
an r-partite subgraph H of minimum degree (1− 1/r + o(1))n.

Show that if χ(F ) = r+1 and G is extremal for F then G itself has minimum degree
(1− 1/r + o(1))n, where n = |G|.

Let r, s ∈ N be fixed. Show that, for large n, the unique extremal graph for sKr+1

(s disjoint copies of Kr+1) is Ks−1 + Tr(n− s+1) (that is, Ks−1 with every vertex joined
to every vertex of a Turán graph on the remaining vertices).

[Hint. As usual, assign each vertex of G to the class in H in which it has fewest
neighbours. Consider the cases (a) some vertex of G has more than o(n) neighbours in its
own class, applying induction on s, (b) some class contains s independent edges and (c)
each class has a set of 2(s − 1) vertices meeting all edges in its class.]

2

Let G be a graph of order n and let kp(G) be the number of copies of Kp in G. Let
c ∈ R and let f(G) = k2(G)− ck3(G). Show that, amongst graphs of order n, the function
f(G) takes its maximum on some complete multipartite graph.

Deduce that, for 0 6 θ 6 1, if G has (1 − θ)k2(T2(n)) + θk2(T3(n)) edges then it
contains at least θk3(T3(n)) triangles, where Tp(n) is the p-partite Turán graph of order n.

Suppose now that n > 4 is even, and that G has n2/4 + 1 edges. Show that G has
at least n/2 triangles.

[Hint. Consider the case where every edge is in some triangle, and the other case.
For the latter, apply induction on n: if uv is in no triangles, how many edges can meet uv?]

3

State and prove Szemerédi’s Regularity Lemma. [You may assume that if U ′ ⊂ U
and W ′ ⊂ W satisfy |U ′| > (1− δ)|U | and |W ′| > (1− δ)|W | then |d(U ′,W ′)− d(U,W )| 6
2δ, and also any quantitative form of the Cauchy-Schwarz inequality that you need.]

Let G be a graph of order n with 51n2/200 edges. Explain why there exists some
c > 0 such that V (G) contains disjoint sets U1, U2, U3 with |Ui| > cn, 1 6 i 6 3, and with
each pair (Ui, Uj), 1 6 i < j 6 3, being 10−3–uniform and having density at least 10−3.
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Recall from the lectures that c(t) = inf{c : e(G) > c|G| =⇒ G ≻ Kt}.
Show that there exists some constant β > 0 such that c(t) > βt

√
log t for large t.

[Standard probabilistic facts may be assumed if stated clearly.]

Show that c(t) 6 7t
√
log t for large t.

[You may assume that, for every integer k, if e(G) 6 11k|G| then G ≻ H where
|H| 6 11k + 2 and 2δ(H) > |H|+ 4k − 1.]

Show that, if n > 4 and G has n vertices and 2n − 2 edges, then G ≻ K4.

[Hint. Apply induction on n, considering the case where every edge lies in at least
two triangles and the other case.]

Does the same statement hold with 2n− 2 replaced by 2n− 3?
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