

MATHEMATICAL TRIPOS Part III

Wednesday, 6 June, 2018 9:00 am to 11:00 am

PAPER 109

COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let X be a set with n elements, and $1 \leq k \leq n$. Let $\mathcal{A} \subset \mathcal{P}(X)$ be a family of sets containing no (k+1)-chain $A_0 \subsetneq A_1 \subsetneq \cdots \subsetneq A_k$. [Thus, if k = 1 then \mathcal{A} is a Sperner system.] For $0 \leq i \leq n$ let w(i) > 0, and define the weight of \mathcal{A} as

$$w(\mathcal{A}) = \sum_{A \in \mathcal{A}} w(|A|).$$

(a) Show that if k = 1 then we have

$$\sum_{A \in \mathcal{A}} \binom{n}{|A|}^{-1} \leqslant 1,$$

with equality if and only if $\mathcal{A} = X^{(r)}$ for some $r, 0 \leq r \leq n$.

(b) Show that the weight $w(\mathcal{A})$ of \mathcal{A} is at most the sum of the k largest terms in the sequence $u(0), u(1), \ldots, u(n)$, where $u(i) = \binom{n}{i} w(i)$.

(c) Show that no matter what the weights w(i) are, in (b) we have equality for some family \mathcal{A} .

(d) Given n and k, for what integers m are there weights w(i) for which there are exactly m families \mathcal{A} of maximal weight?

UNIVERSITY OF

 $\mathbf{2}$

Let X be a set of n elements and, for i = 1, ..., m, let A_i and B_i be disjoint subsets of X. Suppose that the family Σ of the pairs (A_i, B_i) separates the elements of X, i.e. Σ is such that for all $x, y \in X$, $x \neq y$, there is an index i such that x is in one of A_i and B_i , and y is in the other.

(a) Show that if

$$\sum_{i=1}^{m} (|A_i| + |B_i|) \leq \lambda mn,$$

where $\lambda \leq 1$, then

$$m \geqslant \lceil (\log_2 n) / \lambda \rceil.$$

(b) Show that for $\lambda = 1$ and $n \ge 2$ the lower bound in (i) is best possible.

(c) Let $\lambda = 1/2$. Is the lower bound in (a) best possible for n = 4? And for n = 8?

3

(i) Let A be a subset of the cube Q_n and let C be the initial segment of length |A| in the binary order on Q_n . Show that

$$|\partial_e(C)| \leqslant |\partial_e(A)|.$$

(ii) Write

$$f_n(a) = \min \{ | \{ xy \in E(G_n) : x \in A, y \notin A \} | : A \subset V(G_n), |A| = a \}$$

for the edge-isoperimetric function of the $n \times n$ grid G_n with n^2 vertices and 2n(n-1) edges. Determine $f_n(a)$ for $(b-1)^2 < a \leq b^2 - b$, where b < n/2.

UNIVERSITY OF

 $\mathbf{4}$

(i) For $a = (a_1, \ldots, a_n)$, with nonnegative integers a_i , write D(a) for the constant term of the Laurent polynomial $- (X_i)^{a_i}$

$$F(X;a) = \prod_{\substack{1 \le i, j \le n \\ i \ne j}} \left(1 - \frac{X_i}{X_j} \right)^a$$

in $X = (X_1, \ldots, X_n)$. Show that

$$D(a) = \binom{m}{a_1, \dots, a_n},$$

where $m = \sum_{i=1}^{n} a_i$.

(ii) Let p be a prime, and let $b_1, \ldots, b_p \in \mathbb{Z}_p$ be a sequence of (not necessarily distinct) elements with zero sum: $\sum_{i=1}^{p} b_i = 0$. Show that there are enumerations a_1, \ldots, a_p and c_1, \ldots, c_p of the elements of \mathbb{Z}_p such that $b_1 = c_1 - a_1, \ldots, b_p = c_p - a_p$.

END OF PAPER