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Let X be a set with n elements, and 1 6 k 6 n. Let A ⊂ P(X) be a family of sets
containing no (k + 1)-chain A0 ( A1 ( · · · ( Ak. [Thus, if k = 1 then A is a Sperner
system.] For 0 6 i 6 n let w(i) > 0, and define the weight of A as

w(A) =
∑

A∈A

w(|A|).

(a) Show that if k = 1 then we have

∑

A∈A

(

n

|A|

)−1

6 1,

with equality if and only if A = X(r) for some r, 0 6 r 6 n.

(b) Show that the weight w(A) of A is at most the sum of the k largest terms in the
sequence u(0), u(1), . . . , u(n), where u(i) =

(

n
i

)

w(i).

(c) Show that no matter what the weights w(i) are, in (b) we have equality for some family
A.

(d) Given n and k, for what integers m are there weights w(i) for which there are exactly
m families A of maximal weight?
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Let X be a set of n elements and, for i = 1, . . . ,m, let Ai and Bi be disjoint subsets of X.
Suppose that the family Σ of the pairs (Ai, Bi) separates the elements of X, i.e. Σ is such
that for all x, y ∈ X, x 6= y, there is an index i such that x is in one of Ai and Bi, and y
is in the other.

(a) Show that if
m
∑

i=1

(|Ai|+ |Bi|) 6 λmn,

where λ 6 1, then
m > ⌈(log2 n)/λ⌉.

(b) Show that for λ = 1 and n > 2 the lower bound in (i) is best possible.

(c) Let λ = 1/2. Is the lower bound in (a) best possible for n = 4? And for n = 8?

3

(i) Let A be a subset of the cube Qn and let C be the initial segment of length |A| in the
binary order on Qn. Show that

|∂e(C)| 6 |∂e(A)|.

(ii) Write

fn(a) = min
{

|{xy ∈ E(Gn) : x ∈ A, y /∈ A}| : A ⊂ V (Gn), |A| = a
}

for the edge-isoperimetric function of the n × n grid Gn with n2 vertices and 2n(n − 1)
edges. Determine fn(a) for (b− 1)2 < a 6 b2 − b, where b < n/2.
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(i) For a = (a1, . . . , an), with nonnegative integers ai, write D(a) for the constant term of
the Laurent polynomial

F (X; a) =
∏

16i,j6n
i 6=j

(

1−
Xi

Xj

)ai

in X = (X1, . . . ,Xn). Show that

D(a) =

(

m

a1, . . . , an

)

,

where m =
∑n

i=1 ai.

(ii) Let p be a prime, and let b1, . . . , bp ∈ Zp be a sequence of (not necessarily distinct)
elements with zero sum:

∑p
i=1 bi = 0. Show that there are enumerations a1, . . . , ap and

c1, . . . , cp of the elements of Zp such that b1 = c1 − a1, . . . , bp = cp − ap.
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