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1

State the pointwise ergodic theorem, and identify the limit in the theorem when the
system is ergodic.

[You may use without proof the L1 version of the mean ergodic theorem.]

Let K > 2 be an integer. Prove that the measure preserving system (R/Z,B,m, TK)
is ergodic, where m is the Lebesgue measure and TK(x) = Kx.

Define what is a normal number and prove that there exists a number that is normal
in all integer bases greater than 1.

Fix a number a > 1. Let (X,B, µ, T ) be a measure preserving system, and let
f ∈ L1(X,µ). Prove that

lim
n→∞

f(T nx)

na
= 0

for almost every x.

Is there a value of a < 1 for which the above statement holds in general?

[Hint: You may use without proof the following fact. If (X,B, µ, T ) is an invertible

ergodic measure preserving system with the property that for every ε > 0 there is A ∈ B

with 0 < µ(A) < ε, then for every k ∈ Z>0 and ε > 0, there is a set B ∈ B such that the

sets B,T (B), . . . , T k−1(B) are pairwise disjoint and µ(B) > 1/k − ε.]

2

Define what is a sequence of full density and convergence in density.

State and prove van der Corput’s lemma.

Let P (x) = ax2 + bx + c be a polynomial with a, b, c ∈ R and suppose that a is
irrational. Use van der Corput’s lemma to show that

1

N

N−1∑

n=0

exp(2πimP (n)) → 0

for all integers m 6= 0. Conclude that the fractional part of the sequence an2 + bn + c is
equidistributed in R/Z.

[You may NOT use Weyl’s theorem on equidistribution of polynomials or Fursten-

berg’s theorem on skew products without proof.]
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3

Let (X,B, µ, T ) be a measure preserving system and let ξ ⊂ B be a partition with
Hµ(ξ) < ∞. Prove that the sequence 1

n
Hµ(ξ

n−1

0
) is monotone non-increasing.

Give the definitions of hµ(T, ξ) and hµ(T ).

State and prove the Shannon–McMillan–Breiman theorem.

[You may use without proof the martingale convergence theorem and the maximal

inequality for conditional information functions.]

4

State Rudolph’s theorem on measures supported on R/Z that are simultaneously
T2 : x 7→ 2x and T3 : x 7→ 3x invariant.

State Host’s theorem (including the case of non-ergodic systems) and deduce
Rudolph’s theorem from it.

Show that there is a number x ∈ [0, 1) that is normal in base 2 but not in base 3.

[Hint: Show that there is a T3-invariant measure supported on the middle third

Cantor set that has positive entropy.]
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