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1 Let Ω be an open subset of Rn, and let u ∈ C2(Ω) be a harmonic function on Ω.

(a) Derive the mean value formulae, which say that if Bρ(y) ⊂⊂ Ω, then

u(y) =
1

ωnρn

∫

Bρ(y)
u =

1

nωnρn−1

∫

∂Bρ(y)
u,

where ωn is the volume of the unit ball B1(0) of R
n.

Deduce the strong maximum principle for harmonic functions.

(b) If additionally u is non-negative and if B4ρ(y) ⊂⊂ Ω, prove the Harnack inequality
for u, which says that

sup
Bρ(y)

u 6 3n inf
Bρ(y)

u.

(c) If Ω = R
n and if u is bounded from above or from below, show that u must be

constant.

(d) Does the result in (c) hold if Ω = R
2 \{0}? What if Ω = R

n \{0} for n 6= 2? Justify
your answers.
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2

(a) Let L = aijDij + biDi + c be an elliptic operator on a bounded domain Ω ⊂ R
n,

where aij , bi, c are given functions on Ω and the summation over repeated indices
is assumed. Giving the additional hypotheses needed, state and prove the weak
maximum principle for a function u ∈ C2(Ω) ∩ C0(Ω) satisfying Lu > 0 in Ω.

(b) Let Ω be a bounded open subset of Rn and let AΩ(u) be the area of the graph of a
function u ∈ C1(Ω), i.e.

AΩ(u) =

∫

Ω

√
1 + |Du|2.

The Euler–Lagrange equation satisfied by a C1 critical point u of AΩ has the weak
form ∫

Ω

DiuDiϕ√
1 + |Du|2

= 0 for each ϕ ∈ C1
c (Ω).

If u ∈ C2(Ω) and u is a critical point of AΩ, explain briefly why u ∈ C∞(Ω).

If u ∈ C2(Ω) and u is a critical point of AΩ, show that

sup
Ω

|Du| = sup
∂Ω

|Du|.

[Hint: Show first that v = |Du|2 satisfies a differential inequality of the form

aijDijv + biDiv > 0 in Ω.]

(c) Let n > 2, u ∈ C2(Rn \ {0}) and suppose that for each bounded open set
Ω ⊂ R

n \ {0}, u|Ω is a critical point of AΩ. Let Gu be the the graph of u, i.e.
Gu = {(x, u(x)) : x ∈ R

n \ {0}} ⊂ R
n+1. If Gu is a cone, i.e. if

X ∈ Gu, λ > 0 =⇒ λX ∈ Gu,

show that Gu is an n-dimensional plane in R
n+1 passing through the origin.
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3 Let α ∈ (0, 1) and let Ω be a bounded C2,α domain in R
n. Let L = aijDij+b

iDi+c
with aij , bi, c ∈ C0,α(Ω) and aij(x)ξiξj > λ|ξ|2 for some constant λ > 0 and all ξ ∈ R

n and
x ∈ Ω, where summation over repeated indices is assumed. Let u ∈ C2,α (Ω) be a solution
to the Dirichlet problem

Lu = f in Ω,
u = 0 on ∂ Ω,

where f ∈ C0,α(Ω).

(a) Giving any additional hypotheses needed, state without proof the Hopf boundary
point lemma concerning functions v ∈ C2(Ω) satisfying Lv > 0 in Ω.

Deduce the strong maximum principle for v ∈ C2(Ω) satisfying Lv > 0 in Ω.

(b) State without proof the global Schauder estimate satisfied by u.

(c) If f 6 0 and u > 0 in Ω, show that either u > 0 in Ω or u = 0 in Ω.

(d) Let Ω′ ⊂⊂ Ω. Show that there is a constant C > 0 depending only on n, α,Ω,Ω′, L

such that if u > 0 in Ω then (for f not assumed to have a sign)

sup
Ω
u 6 C

(
inf
Ω′

u+ |f |0,α;Ω
)
.

[Hint: Argue by contradiction.]
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4 Let B1(0) be the open unit ball in R
n and let α ∈ (0, 1). Show that for each

δ ∈ (0, 1), there is a constant C = C(n, α, δ) ∈ (0,∞) such that if u ∈ C2,α(B1(0)) is a
solution to ∆u = f in B1(0) for some f ∈ C0,α(B1(0)), then

[D2u]α;B1/2(0) 6 δ[D2u]α;B1(0) + C
(
|u|2;B1(0) + |f |0,α;B1(0)

)
.

[You may use without proof Liouville’s Theorem: there does not exist a non-constant

harmonic function w on R
n such that [w]α;Rn <∞.]

Explain briefly how to deduce from the above result that there is a constant
C = C(n, α) such that, for u and f as above,

[D2u]α;B1/2(0) 6 C
(
|u|2;B1(0) + |f |0,α;B1(0)

)
. (⋆)

[You are not required to give proofs of any additional results needed.]

Give an example to show that the estimate (⋆) cannot be improved to

[D2u]α;B1/2(0) 6 C
(
|u|2;B1(0) + |f |0;B1(0)

)

for some constant C = C(n, α).
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5 Let Ω be a bounded C2,α domain in R
n where α ∈ (0, 1), and for i, j ∈ {1, 2, . . . , n},

let aij , bi, c ∈ C0,α(Ω). Let L : C2,α(Ω) → C0,α(Ω) be the operator given by

Lu = aijDiju+ biDiu+ cu,

where summation over repeated indices is assumed. Suppose that L is strictly elliptic in
Ω.

(a) State the Fredholm alternative concerning the existence, for any given f ∈ C0,α(Ω),
of a solution u ∈ C2,α(Ω) to the Dirichlet problem Lu = f in Ω, u = 0 on ∂ Ω.

(b) Suppose that there is no non-zero function u ∈ C2,α(Ω) satisfying Lu = 0 in Ω, u = 0
on ∂ Ω. Prove that there is a constant C1 = C1(n, α,L,Ω) such that if u ∈ C2,α(Ω)
solves the Dirichlet problem Lu = f in Ω, u = 0 on ∂ Ω for some f ∈ C0,α(Ω), then

|u|0;Ω 6 C1|f |0,α;Ω.

[Hint: Argue by contradiction.]

Let Q : C2,α(Ω) → C0,α(Ω) be an operator satisfying

|Q(u)|0,α;Ω 6 C|u|22,α;Ω + δ

and
|Q(u1)−Q(u2)|0,α;Ω 6 (C (|u1|2,α;Ω + |u2|2,α;Ω) + δ) |u1 − u2|2,α;Ω

for some constants C > 0, δ > 0 and all u, u1, u2 ∈ {v ∈ C2,α(Ω) : |v|2,α;Ω 6 1}.

(c) Suppose that there is no non-zero function u ∈ C2,α(Ω) satisfying Lu = 0 in
Ω, u = 0 on ∂ Ω. Prove that for any given C > 0, there are positive constants
δ = δ(n, α,L,C,Ω) and ǫ0 = ǫ0(n, α,L,C,Ω) such that if Q satisfies the above
conditions then for each f ∈ C0,α(Ω) with |f |0,α;Ω 6 ǫ0, the Dirichlet problem
Lu = Q(u) + f in Ω, u = 0 on ∂ Ω has a solution u ∈ C2,α(Ω).

[Hint: Set up the question as a fixed point problem for a map T : B → B where

B = {v ∈ C2,α(Ω) : v = 0 on ∂Ω and |v|2,α;Ω 6 ǫ} for an appropriate choice of

ǫ > 0.]

(d) Deduce that there is a constant β = β(n, α,Ω) ∈ (0, 1) such that if ψ ∈ C2,α(Ω)

satisfies |ψ|2,α;Ω 6 β, then the minimal surface equation div

(
Du√

1+|Du|2

)
= 0 in Ω

has a solution u ∈ C2,α(Ω) with u = ψ on ∂ Ω.

[You may use without proof that the minimal surface equation can be written in

the form ∆u = Q̃(u) where Q̃ satisfies |Q̃(u)|0,α;Ω 6 C|u|22,α;Ω and |Q̃(u1) −
Q̃(u2)|0,α;Ω 6 C (|u1|2,α;Ω + |u2|2,α;Ω) |u1 − u2|2,α;Ω for some constant C and all

u, u1, u2 ∈ {v ∈ C2,α(Ω) : |v|2,α;Ω 6 2}.]

Part III, Paper 107



7

6 Let Ω a bounded C2,α domain of Rn for some α ∈ (0, 1), and let ψ ∈ C2,α(Ω). Let

Q be the differential operator defined by

Qu = ∆u− V (u),

where V : R → R is a given smooth non-increasing function. Suppose that there are
functions ϕ± ∈ C2(Ω) ∩ C0,α(Ω) with Qϕ+ 6 0 6 Qϕ− in Ω and ϕ+ > ψ > ϕ− on ∂Ω.

(a) Show that there exists a function u1 ∈ C2,α(Ω) with ϕ− 6 u1 6 ϕ+ in Ω such that
∆u1 = V (ϕ−) in Ω and u1 = ψ on ∂Ω.

(b) Deduce that there exists a sequence of functions uk ∈ C2,α(Ω) with ϕ− 6 u1 6

u2 6 u3 6 . . . 6 ϕ+ in Ω such that ∆uk = V (uk−1) in Ω, uk = ψ on ∂ Ω for each
k = 1, 2, 3, . . ., where u0 = ϕ−.

(c) Show that there is a constant C > 0 depending on ϕ±, ψ, V such that the functions
uk as in (b) satisfy

|uk|2,α;Ω 6
1

2
|uk−1|2,α;Ω + C

for each k = 2, 3, . . . .

[You may use without proof the interpolation inequality that for each ǫ > 0, there is

γ(ǫ) such that for any v ∈ C2,α(Ω),

|v|0,α;Ω 6 ǫ|v|2,α;Ω + γ(ǫ)|v|0;Ω ]

(d) Deduce that there exists u ∈ C2,α(Ω) with ϕ− 6 u 6 ϕ+ in Ω such that Qu = 0 in
Ω and u = ψ on ∂Ω.

END OF PAPER
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