MATHEMATICAL TRIPOS Part III

Friday, 8 June, 2018 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 107

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Let Ω be an open subset of \mathbb{R}^n , and let $u \in C^2(\Omega)$ be a harmonic function on Ω .

 $\mathbf{2}$

(a) Derive the mean value formulae, which say that if $B_{\rho}(y) \subset \subset \Omega$, then

$$u(y) = \frac{1}{\omega_n \rho^n} \int_{B_\rho(y)} u = \frac{1}{n\omega_n \rho^{n-1}} \int_{\partial B_\rho(y)} u,$$

where ω_n is the volume of the unit ball $B_1(0)$ of \mathbb{R}^n .

Deduce the strong maximum principle for harmonic functions.

(b) If additionally u is non-negative and if $B_{4\rho}(y) \subset \Omega$, prove the Harnack inequality for u, which says that

$$\sup_{B_{\rho}(y)} u \leqslant 3^{n} \inf_{B_{\rho}(y)} u$$

- (c) If $\Omega = \mathbb{R}^n$ and if u is bounded from above or from below, show that u must be constant.
- (d) Does the result in (c) hold if $\Omega = \mathbb{R}^2 \setminus \{0\}$? What if $\Omega = \mathbb{R}^n \setminus \{0\}$ for $n \neq 2$? Justify your answers.

- $\mathbf{2}$
- (a) Let $L = a^{ij}D_{ij} + b^iD_i + c$ be an elliptic operator on a bounded domain $\Omega \subset \mathbb{R}^n$, where a^{ij}, b^i, c are given functions on Ω and the summation over repeated indices is assumed. Giving the additional hypotheses needed, state and prove the weak maximum principle for a function $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfying $Lu \ge 0$ in Ω .
- (b) Let Ω be a bounded open subset of \mathbb{R}^n and let $\mathcal{A}_{\Omega}(u)$ be the area of the graph of a function $u \in C^1(\Omega)$, i.e.

$$\mathcal{A}_{\Omega}(u) = \int_{\Omega} \sqrt{1 + |Du|^2}.$$

The Euler–Lagrange equation satisfied by a C^1 critical point u of \mathcal{A}_{Ω} has the weak form

$$\int_{\Omega} \frac{D_i u D_i \varphi}{\sqrt{1+|Du|^2}} = 0 \text{ for each } \varphi \in C_c^1(\Omega).$$

If $u \in C^2(\Omega)$ and u is a critical point of \mathcal{A}_{Ω} , explain *briefly* why $u \in C^{\infty}(\Omega)$. If $u \in C^2(\overline{\Omega})$ and u is a critical point of \mathcal{A}_{Ω} , show that

$$\sup_{\Omega} |Du| = \sup_{\partial \Omega} |Du|.$$

[Hint: Show first that $v = |Du|^2$ satisfies a differential inequality of the form $a^{ij}D_{ij}v + b^iD_iv \ge 0$ in Ω .]

(c) Let $n \ge 2$, $u \in C^2(\mathbb{R}^n \setminus \{0\})$ and suppose that for each bounded open set $\Omega \subset \mathbb{R}^n \setminus \{0\}$, $u|_{\Omega}$ is a critical point of \mathcal{A}_{Ω} . Let \mathcal{G}_u be the the graph of u, i.e. $\mathcal{G}_u = \{(x, u(x)) : x \in \mathbb{R}^n \setminus \{0\}\} \subset \mathbb{R}^{n+1}$. If \mathcal{G}_u is a cone, i.e. if

$$X \in \mathcal{G}_u, \ \lambda > 0 \implies \lambda X \in \mathcal{G}_u,$$

show that \mathcal{G}_u is an *n*-dimensional plane in \mathbb{R}^{n+1} passing through the origin.

3 Let $\alpha \in (0, 1)$ and let Ω be a bounded $C^{2,\alpha}$ domain in \mathbb{R}^n . Let $L = a^{ij}D_{ij} + b^iD_i + c$ with $a^{ij}, b^i, c \in C^{0,\alpha}(\overline{\Omega})$ and $a^{ij}(x)\xi^i\xi^j \ge \lambda |\xi|^2$ for some constant $\lambda > 0$ and all $\xi \in \mathbb{R}^n$ and $x \in \Omega$, where summation over repeated indices is assumed. Let $u \in C^{2,\alpha}(\overline{\Omega})$ be a solution to the Dirichlet problem

4

$$Lu = f \text{ in } \Omega,$$

$$u = 0 \text{ on } \partial \Omega,$$

where $f \in C^{0,\alpha}(\overline{\Omega})$.

(a) Giving any additional hypotheses needed, state without proof the Hopf boundary point lemma concerning functions $v \in C^2(\Omega)$ satisfying $Lv \ge 0$ in Ω .

Deduce the strong maximum principle for $v \in C^2(\Omega)$ satisfying $Lv \ge 0$ in Ω .

- (b) State without proof the global Schauder estimate satisfied by u.
- (c) If $f \leq 0$ and $u \geq 0$ in Ω , show that either u > 0 in Ω or u = 0 in $\overline{\Omega}$.
- (d) Let $\Omega' \subset \subset \Omega$. Show that there is a constant C > 0 depending only on $n, \alpha, \Omega, \Omega', L$ such that if $u \ge 0$ in Ω then (for f not assumed to have a sign)

$$\sup_{\Omega} u \leqslant C\left(\inf_{\Omega'} u + |f|_{0,\alpha;\Omega}\right).$$

[Hint: Argue by contradiction.]

4 Let $B_1(0)$ be the open unit ball in \mathbb{R}^n and let $\alpha \in (0,1)$. Show that for each $\delta \in (0,1)$, there is a constant $C = C(n,\alpha,\delta) \in (0,\infty)$ such that if $u \in C^{2,\alpha}(\overline{B_1(0)})$ is a solution to $\Delta u = f$ in $B_1(0)$ for some $f \in C^{0,\alpha}(\overline{B_1(0)})$, then

$$[D^2 u]_{\alpha; B_{1/2}(0)} \leq \delta[D^2 u]_{\alpha; B_1(0)} + C\left(|u|_{2; B_1(0)} + |f|_{0,\alpha; B_1(0)}\right).$$

[You may use without proof Liouville's Theorem: there does not exist a non-constant harmonic function w on \mathbb{R}^n such that $[w]_{\alpha;\mathbb{R}^n} < \infty$.]

Explain briefly how to deduce from the above result that there is a constant $C = C(n, \alpha)$ such that, for u and f as above,

$$[D^2 u]_{\alpha; B_{1/2}(0)} \leqslant C \left(|u|_{2; B_1(0)} + |f|_{0,\alpha; B_1(0)} \right). \tag{(\star)}$$

[You are not required to give proofs of any additional results needed.]

Give an example to show that the estimate (\star) cannot be improved to

$$[D^2 u]_{\alpha; B_{1/2}(0)} \leq C \left(|u|_{2; B_1(0)} + |f|_{0; B_1(0)} \right)$$

for some constant $C = C(n, \alpha)$.

5 Let Ω be a bounded $C^{2,\alpha}$ domain in \mathbb{R}^n where $\alpha \in (0,1)$, and for $i, j \in \{1, 2, \ldots, n\}$, let $a^{ij}, b^i, c \in C^{0,\alpha}(\overline{\Omega})$. Let $L : C^{2,\alpha}(\overline{\Omega}) \to C^{0,\alpha}(\overline{\Omega})$ be the operator given by

$$Lu = a^{ij}D_{ij}u + b^iD_iu + cu,$$

where summation over repeated indices is assumed. Suppose that L is strictly elliptic in Ω .

- (a) State the Fredholm alternative concerning the existence, for any given $f \in C^{0,\alpha}(\overline{\Omega})$, of a solution $u \in C^{2,\alpha}(\overline{\Omega})$ to the Dirichlet problem Lu = f in Ω , u = 0 on $\partial \Omega$.
- (b) Suppose that there is no non-zero function $u \in C^{2,\alpha}(\overline{\Omega})$ satisfying Lu = 0 in Ω , u = 0on $\partial \Omega$. Prove that there is a constant $C_1 = C_1(n, \alpha, L, \Omega)$ such that if $u \in C^{2,\alpha}(\overline{\Omega})$ solves the Dirichlet problem Lu = f in Ω , u = 0 on $\partial \Omega$ for some $f \in C^{0,\alpha}(\overline{\Omega})$, then

$$|u|_{0;\Omega} \leqslant C_1 |f|_{0,\alpha;\Omega}.$$

[Hint: Argue by contradiction.]

Let $\mathcal{Q} : C^{2,\alpha}(\overline{\Omega}) \to C^{0,\alpha}(\overline{\Omega})$ be an operator satisfying

$$|\mathcal{Q}(u)|_{0,\alpha;\Omega} \leqslant C |u|_{2,\alpha;\Omega}^2 + \delta$$

and

$$|\mathcal{Q}(u_1) - \mathcal{Q}(u_2)|_{0,\alpha;\Omega} \leq (C(|u_1|_{2,\alpha;\Omega} + |u_2|_{2,\alpha;\Omega}) + \delta) |u_1 - u_2|_{2,\alpha;\Omega}$$

for some constants C > 0, $\delta > 0$ and all $u, u_1, u_2 \in \{v \in C^{2,\alpha}(\overline{\Omega}) : |v|_{2,\alpha;\Omega} \leq 1\}$.

(c) Suppose that there is no non-zero function $u \in C^{2,\alpha}(\overline{\Omega})$ satisfying Lu = 0 in Ω , u = 0 on $\partial \Omega$. Prove that for any given C > 0, there are positive constants $\delta = \delta(n, \alpha, L, C, \Omega)$ and $\epsilon_0 = \epsilon_0(n, \alpha, L, C, \Omega)$ such that if \mathcal{Q} satisfies the above conditions then for each $f \in C^{0,\alpha}(\overline{\Omega})$ with $|f|_{0,\alpha;\Omega} \leq \epsilon_0$, the Dirichlet problem $Lu = \mathcal{Q}(u) + f$ in Ω , u = 0 on $\partial \Omega$ has a solution $u \in C^{2,\alpha}(\overline{\Omega})$.

[Hint: Set up the question as a fixed point problem for a map $T : \mathcal{B} \to \mathcal{B}$ where $\mathcal{B} = \{v \in C^{2,\alpha}(\overline{\Omega}) : v = 0 \text{ on } \partial\Omega \text{ and } |v|_{2,\alpha;\Omega} \leq \epsilon\}$ for an appropriate choice of $\epsilon > 0.$]

(d) Deduce that there is a constant $\beta = \beta(n, \alpha, \Omega) \in (0, 1)$ such that if $\psi \in C^{2, \alpha}(\overline{\Omega})$ satisfies $|\psi|_{2,\alpha;\Omega} \leq \beta$, then the minimal surface equation $\operatorname{div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0$ in Ω has a solution $u \in C^{2,\alpha}(\overline{\Omega})$ with $u = \psi$ on $\partial \Omega$.

[You may use without proof that the minimal surface equation can be written in the form $\Delta u = \widetilde{\mathcal{Q}}(u)$ where $\widetilde{\mathcal{Q}}$ satisfies $|\widetilde{\mathcal{Q}}(u)|_{0,\alpha;\Omega} \leq C|u|_{2,\alpha;\Omega}^2$ and $|\widetilde{\mathcal{Q}}(u_1) - \widetilde{\mathcal{Q}}(u_2)|_{0,\alpha;\Omega} \leq C(|u_1|_{2,\alpha;\Omega} + |u_2|_{2,\alpha;\Omega}) |u_1 - u_2|_{2,\alpha;\Omega}$ for some constant C and all $u, u_1, u_2 \in \{v \in C^{2,\alpha}(\overline{\Omega}) : |v|_{2,\alpha;\Omega} \leq 2\}$.]

Part III, Paper 107

6 Let Ω a bounded $C^{2,\alpha}$ domain of \mathbb{R}^n for some $\alpha \in (0,1)$, and let $\psi \in C^{2,\alpha}(\overline{\Omega})$. Let

 ${\cal Q}$ be the differential operator defined by

$$Qu = \Delta u - V(u),$$

where $V : \mathbb{R} \to \mathbb{R}$ is a given smooth non-increasing function. Suppose that there are functions $\varphi^{\pm} \in C^2(\Omega) \cap C^{0,\alpha}(\overline{\Omega})$ with $Q\varphi^+ \leq 0 \leq Q\varphi^-$ in Ω and $\varphi^+ \geq \psi \geq \varphi^-$ on $\partial\Omega$.

- (a) Show that there exists a function $u_1 \in C^{2,\alpha}(\overline{\Omega})$ with $\varphi^- \leq u_1 \leq \varphi^+$ in $\overline{\Omega}$ such that $\Delta u_1 = V(\varphi^-)$ in Ω and $u_1 = \psi$ on $\partial \Omega$.
- (b) Deduce that there exists a sequence of functions $u_k \in C^{2,\alpha}(\overline{\Omega})$ with $\varphi^- \leq u_1 \leq u_2 \leq u_3 \leq \ldots \leq \varphi^+$ in $\overline{\Omega}$ such that $\Delta u_k = V(u_{k-1})$ in Ω , $u_k = \psi$ on $\partial \Omega$ for each $k = 1, 2, 3, \ldots$, where $u_0 = \varphi^-$.
- (c) Show that there is a constant C > 0 depending on φ^{\pm}, ψ, V such that the functions u_k as in (b) satisfy

$$|u_k|_{2,\alpha;\Omega} \leqslant \frac{1}{2} |u_{k-1}|_{2,\alpha;\Omega} + C$$

for each k = 2, 3, ...

[You may use without proof the interpolation inequality that for each $\epsilon > 0$, there is $\gamma(\epsilon)$ such that for any $v \in C^{2,\alpha}(\overline{\Omega})$,

$$|v|_{0,\alpha;\Omega} \leqslant \epsilon |v|_{2,\alpha;\Omega} + \gamma(\epsilon) |v|_{0;\Omega}]$$

(d) Deduce that there exists $u \in C^{2,\alpha}(\overline{\Omega})$ with $\varphi^- \leq u \leq \varphi^+$ in Ω such that Qu = 0 in Ω and $u = \psi$ on $\partial \Omega$.

END OF PAPER