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1

Let X be a Banach space. Prove that fn
w∗

−→ f in X∗ if and only if fn(x) → f(x)

for all x ∈ X. Prove that if fn
w∗

−→ f in X∗ and xn → x in X, then fn(xn) → f(x). Show
further that on a ‖·‖-compact subset of X∗, the ‖·‖-topology and w∗-topology coincide.

State and prove the Banach–Alaoglu theorem.

Let X and Y be Banach spaces and T ∈ B(X,Y ). Prove that T ∗ is w∗-to-w∗-
continuous. Show that T is compact if and only if T ∗ is w∗-to-‖·‖-continuous on bounded
subsets of Y ∗. [You may assume without proof that T is compact if and only if T ∗ is
compact.]

2

Throughout this question H is a complex Hilbert space with H 6= {0}.

(a) Let A be a commutative unital C∗-subalgebra of B(H). State the spectral
theorem for A.

(b) Let T ∈ B(H) be a normal operator and K = σ(T ) be the spectrum of T in
B(H). Referring to part (a) if necessary, prove that there is a resolution P of the identity
of H over K (also known as a spectral measure) such that

T =

∫

K

λdP (λ) .

What can you say about P (U) for a non-empty, open subset U of K? Prove your claim.
[If your claim is already part of your statement in part (a), then you cannot simply refer
to that. Otherwise, part (a) can be used in your proof.].

Prove the following statements.

1. If λ is an isolated point of K, then λ is an eigenvalue of T and P ({λ}) is the
orthogonal projection onto the eigenspace ker(λI − T ).

2. If K consists of a single point, then T is a scalar multiple of the identity.

3. If dimH > 1, then T has a non-trivial invariant subspace: there is a closed subspace
L of H such that L 6= {0}, L 6= H and T (L) ⊂ L.

[Properties of the integral
∫

K
f dP , where f ∈ L∞(K), can be assumed without proof.]
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(a) Let A and B be non-empty, disjoint convex subsets of a real locally convex space
X. Assume that A is open. State and prove the Hahn–Banach separation theorem for A
and B. [You may assume any version of the Hahn–Banach extension theorem.]

Let (xn) be a sequence in a real Banach space X and let ̺ > 0. Show that there
exists f ∈ SX∗ with f(xn) > ̺ for all n ∈ N if and only if

∥

∥

∑n
i=1

tixi
∥

∥ > ̺
∑n

i=1
ti for all

n ∈ N and for all non-negative real numbers t1, . . . , tn.

(b) Describe, without proof, the dual space of C(K), whereK is a compact Hausdorff
space. Prove that if fn

w
−→ 0 in C(K), then f2

n
w
−→ 0 in C(K) also.

(c) State the commutative Gelfand–Naimark theorem. Prove that there is a unique
(up to homeomorphism) compact Hausdorff space K such that the complex Banach space
ℓ∞ is isometrically isomorphic to C(K). Show that K contains a homeomorphic copy of N
with the discrete topology which is dense in K. Show further that every bounded function
N → C has a unique extension to a continuous function K → C.
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State and prove Mazur’s theorem. Show that a w-compact subset of a normed space
is bounded in norm.

Let F be a σ-field on a set Ω. Let X be a separable Banach space equipped with the
Borel σ-field generated by the norm-topology. Let f : Ω → X be a measurable function.
Prove that g : Ω → R given by g(ω) = ‖f(ω)‖ is measurable. [Hint: First prove that there
is a sequence (ϕn) in X∗ such that ‖x‖ = supn ϕn(x) for all x ∈ X.]

Let (Ω,F , µ) be a measure space. Let f : Ω → X be a measurable function such
that

∫

Ω
‖f(ω)‖dµ(ω) < ∞. Show that ϕ ◦ f : Ω → R is µ-integrable for all ϕ ∈ X∗. Let

Tf : X
∗ → R be the map given by

Tf (ϕ) =

∫

Ω

ϕ ◦ f dµ (ϕ ∈ X∗).

Taking for granted the fact that Tf is w∗-continuous, explain briefly why there is a unique
element of X, which we denote by

∫

Ω
f dµ, satisfying

ϕ

(
∫

Ω

f dµ

)

=

∫

Ω

ϕ ◦ f dµ for all ϕ ∈ X∗ .

Let X be a separable Banach space, K ⊂ X be a w-compact set, and f : K → X

be the inclusion map given by f(x) = x for all x ∈ K. We equip K with the weak
topology and X with the norm-topology. Prove that f is measurable with respect to the
Borel σ-fields of K and X. Show further that

∫

Ω
‖f(ω)‖dµ(ω) < ∞ for any bounded

Borel measure µ. Let T : C(K)∗ → X be defined by T (µ) =
∫

K
f dµ, where we identify

C(K)∗ with the space of bounded regular Borel measures on K. Prove that T is w∗-to-
w-continuous. Given x ∈ K, what is T (µ) if µ is the point mass at x? By appealing to
suitable theorems, deduce that convK is w-compact.
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(a) Let A be a commutative unital Banach algebra. Show that every character ϕ

on A is continuous with ‖ϕ‖ = 1. Prove that x ∈ A is invertible if and only if ϕ(x) 6= 0
for all ϕ ∈ ΦA.

Let K be a compact Hausdorff space and let A be the algebra C(K) with the
supremum norm ‖·‖. Prove that ΦA is homeomorphic to K. Let ‖·‖1 be another algebra
norm on A (not necessarily complete), and let B be the completion of (A, ‖·‖1). Prove that
the restriction map R : ΦB → ΦA defined by R(ϕ) = ϕ↾A is a homeomorphism between
ΦB and a closed subset L of K, where we have identified K with ΦA. Let U = K \ L.
Show that for any x ∈ U there exist functions f, g ∈ A such that g(x) = 1, f = 1 on L,
and fg = 0 on K, and deduce that U = ∅. [Hint: first show that there is an open subset
V of K such that x ∈ V ⊂ V ⊂ U and apply Urysohn’s lemma. Then show that f is
invertible in B.] Using that R is surjective, prove that ‖f‖ 6 ‖f‖1 for all f ∈ A.

(b) State the Beurling–Gelfand Spectral Radius Formula. Show that r(x) = ‖x‖
for a hermitian element x of a C∗-algebra. Let A and B be unital C∗-algebras, and let
θ : A → B be a unital ∗-homomorphism. Prove that ‖θ(x)‖ 6 ‖x‖ for all x ∈ A. Now
assume in addition that θ is injective. Show that ‖θ(x)‖ = ‖x‖ for all x ∈ A. [Hint: For
the last part, first show that without loss of generality we may assume that A = C(K) for
some compact Hausdorff space K.]
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