MATHEMATICAL TRIPOS Part III

Thursday, 31 May, 2018 $\,$ 1:30pm to 4:30 pm

PAPER 105

ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Denote by $Q_r(x) := \left(x - \frac{r}{2}, x + \frac{r}{2}\right)^n$ the open cube of side length r, centred at x in \mathbb{R}^n . Assume n .

 $\mathbf{2}$

a) Show that there exists a constant C_1 depending on n, p such that for any $v \in C^1(\mathbb{R}^n)$, the estimate:

$$\left|\overline{v} - v(y)\right| \leqslant C_1 r^{1-\frac{n}{p}} \left\| Dv \right\|_{L^p(Q_r(x))},$$

holds for all $y \in Q_r(x)$, where:

$$\overline{v} = \frac{1}{|Q_r(x)|} \int_{Q_r(x)} v(z) dz.$$

Deduce that there exists a constant C_2 depending on n, p such that

$$|v(y) - v(x)| \leq C_2 r^{1-\frac{n}{p}} \|Dv\|_{L^p(Q_r(x))},$$

holds for all $y \in Q_r(x)$.

- b) Let $u \in W^{1,p}(\mathbb{R}^n)$. Show that there exists $u^* \in C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$ such that $u = u^*$ almost everywhere. Give, without proof, a counterexample to show that this is not true if p < n.
- c) Let $u \in W^{1,p}(\mathbb{R}^n)$. Defining u^* as in part b), show that u^* is *classically* differentiable at almost every point $x \in \mathbb{R}^n$, and at each such point the classical derivative of u^* equals the weak derivative of u.

[Hint: you may wish to consider the function $v(y) := u^*(y) - u^*(x) - Du(x) \cdot (y - x)$ for some appropriately chosen x.]

You may assume standard results concerning approximation of Sobolev functions as well as the Lebesgue differentiation theorem in the following form: given $f \in L^p_{loc.}(\mathbb{R}^n)$, for almost every $x \in \mathbb{R}^n$:

$$\frac{1}{|Q_r(x)|} \int_{Q_r(x)} |f(y) - f(x)|^p \, dy \to 0, \qquad \text{as } r \to 0.$$

 $\mathbf{2}$

- a) State and prove the Lax–Milgram theorem for a bilinear form B defined on a real Hilbert space H.
- b) Let $U \subset \mathbb{R}^n$ be open and bounded, with C^{∞} boundary. Let L be the linear differential operator which acts on sufficiently regular functions $u: U \to \mathbb{R}$ by:

$$Lu := -\sum_{i,j=1}^{n} \left(a^{ij}(x)u_{x_i} \right)_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u_{x_i} + c(x)$$

where $a^{ij}, b^i, c \in C^{\infty}(\overline{U})$ and $a^{ij} = a^{ji}$. Consider the Robin boundary value problem:

$$\begin{cases} (L+\lambda)u = f & \text{in } U, \\ \sum_{i,j=1}^{n} a^{ij} u_{x_i} \nu_j + \beta u = 0 & \text{on } \partial U, \end{cases}$$
(*)

where ν is the outward unit normal to ∂U , $\beta \in C^{\infty}(\partial U)$ and $\lambda \in \mathbb{R}$.

- i) State what it means for L to be uniformly elliptic.
- ii) Find a weak formulation for (\star) . In particular you should demonstrate that $u \in C^2(\overline{U})$ is a classical solution of (\star) if and only if it satisfies your criterion to be a weak solution.
- iii) Show that if $\lambda > 0$ is sufficiently large, (*) admits a unique weak solution $u \in H^1(U)$ for any $f \in L^2(U)$. If you apply the result from part a), you should demonstrate carefully that the hypotheses are satisfied.

You may assume that there exists K > 0 such that for any $u \in H^1(U)$ the inequality:

$$||Tu||_{L^{2}(\partial U)}^{2} \leq K ||u||_{L^{2}(U)} ||Du||_{L^{2}(U)},$$

holds, where $T: H^1(U) \to L^2(\partial U)$ is the trace operator.]

Part III, Paper 105

CAMBRIDGE

3

Let $U \subset \mathbb{R}^n$ be an open, bounded set, with C^{∞} boundary. Let L be the linear differential operator which acts on sufficiently regular functions $u: U \to \mathbb{R}$ by:

4

$$Lu := -\sum_{i,j=1}^{n} \left(a^{ij}(x)u_{x_i} \right)_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u,$$

where $a^{ij} = a^{ji}, b^i, c \in C^{\infty}(\overline{U})$ for i, j = 1, ..., n, and $a^{ij} = a^{ji}$ satisfy the uniform ellipticity condition.

- a) Define the bilinear form $B: H_0^1(U) \times H_0^1(U) \to \mathbb{R}$ associated to the boundary value problem for L with homogeneous Dirichlet conditions, and state what it means for L to be *formally self-adjoint* and *positive*.
- b) Assume L is uniformly elliptic, formally self-adjoint and positive.
 - i) Show that B is a new inner product on $H_0^1(U)$ which defines an equivalent norm to $\|\cdot\|_{H^1(U)}$.
 - ii) For l = 0, 1, 2, ..., define a family of bilinear forms by

$$((u,v))_{2l} := (L^l u, L^l v), \qquad ((u,v))_{2l+1} := B[L^l u, L^l v],$$

with (\cdot, \cdot) the standard inner product on $L^2(U)$. Show that $((\cdot, \cdot))_k$ is an inner product on $H_0^1(U) \cap H^k(U)$ which defines an equivalent norm to $\|\cdot\|_{H^k(U)}$ for any $k = 0, 1, 2, \ldots$

iii) Show that there exists an orthonormal basis for $L^2(U)$, $(w_m)_{m=1}^{\infty}$, together with a sequence of positive numbers, $(\lambda_m)_{m=1}^{\infty}$, such that for any $u \in L^2(U)$ we have:

$$u \in H_0^1(U) \cap H^k(U) \quad \iff \quad \sum_{m=1}^{\infty} (\lambda_m)^k (u, w_m)^2 < \infty.$$

c) Let $U_T = (0,T) \times U$; $\Sigma_0 = \{0\} \times U$; $\partial^* U_T = (0,T) \times \partial U$. Consider the following initial-boundary value problem:

$$\begin{cases} u_t + Lu = 0 & \text{in } U_T \\ u = \psi & \text{on } \Sigma_0 \\ u = 0 & \text{on } \partial^* U_T \end{cases}$$

where L is a uniformly elliptic, formally self-adjoint and positive operator on U whose coefficients are independent of t. Such problems are known as *parabolic*. By explicitly constructing the solution in terms of w_m , λ_m , show that there exists $u \in C^{\infty}(U_T)$ such that:

- For any t > 0, $u(t, \cdot) \in C^{\infty}(\overline{U})$ and $u(t, \cdot) = 0$ on ∂U ;
- $u_t + Lu = 0$ holds everywhere in U_T ;

•
$$\lim_{t \to 0} \|u(t, \cdot) - \psi(\cdot)\|_{L^2(U)} = 0$$

[You may assume any results you require from the course concerning elliptic operators.]

CAMBRIDGE

 $\mathbf{4}$

a) Let $U \subset \mathbb{R}^n$ be open and bounded, with C^{∞} boundary. Set $U_T = U \times (0,T)$, $\partial^* U_T = \partial U \times [0,T]$ and let $\Sigma_t = U \times \{t\}$ for $t \in [0,T]$. Suppose

$$Lu := -\sum_{i,j=1}^{n} \left(a^{ij}(x,t)u_{x_i} \right)_{x_j} + \sum_{i=1}^{n} b^i(x,t)u_{x_i} + c(x,t)u_{x_i} + c(x,t)u_$$

where $a^{ij}, b^i, c \in C^{\infty}(\overline{U}_T)$ and $a^{ij} = a^{ji}$ satisfy the uniform ellipticity condition.

i) Write down the definition for a weak solution $u \in H^1(U_T)$ of the hyperbolic initial-boundary value problem:

$$\begin{cases} u_{tt} + Lu = f & \text{in } U_T, \\ u = \psi_0, \quad u_t = \psi_1 & \text{on } \Sigma_0, \\ u = 0 & \text{on } \partial^* U_T. \end{cases}$$

where $f \in L^2(U_T)$, $\psi_0 \in H^1_0(U)$, $\psi_1 \in L^2(U)$. You need not justify your answer.

- ii) Show that a weak solution, if it exists, is unique.
- iii) Suppose that N is the surface $N = \{t = \tau(x)\}$ for some $\tau \in C^1(U)$. If N is everywhere characteristic, find an equation satisfied by τ .
- b) Consider the linear equation:

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial \rho} \left((1 - \rho^2) \frac{\partial u}{\partial \rho} \right) + \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial t} \right) + \rho \frac{\partial^2 u}{\partial \rho \partial t} = 0$$

for $u: \mathbb{R}^2 \to \mathbb{R}$.

- i) Show that this equation is hyperbolic everywhere in \mathbb{R}^2 , and find and sketch the characteristic surfaces. [Hint: In view of the dimension, these will in fact be curves.]
- ii) Suppose that $u \in C^2(\mathbb{R}^2)$. Show that if $u(\rho, 0) = u_t(\rho, 0) = 0$ for $-1 < \rho < 1$, then $u(\rho, t) = 0$ for $-1 < \rho < 1$, $t \in \mathbb{R}$. Comment on the connection with part b(i).

END OF PAPER