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Denote by Qr(x) :=
(

x− r
2 , x+ r

2

)n
the open cube of side length r, centred at x in R

n.
Assume n < p <∞.

a) Show that there exists a constant C1 depending on n, p such that for any v ∈ C1(Rn),
the estimate:

|v − v(y)| 6 C1r
1−n

p ‖Dv‖Lp(Qr(x))
,

holds for all y ∈ Qr(x), where:

v =
1

|Qr(x)|

∫

Qr(x)
v(z)dz.

Deduce that there exists a constant C2 depending on n, p such that

|v(y)− v(x)| 6 C2r
1−n

p ‖Dv‖Lp(Qr(x))
,

holds for all y ∈ Qr(x).

b) Let u ∈W 1,p(Rn). Show that there exists u∗ ∈ C
0,1−n

p (Rn) such that u = u∗ almost
everywhere. Give, without proof, a counterexample to show that this is not true if
p < n.

c) Let u ∈W 1,p(Rn). Defining u∗ as in part b), show that u∗ is classically differentiable
at almost every point x ∈ R

n, and at each such point the classical derivative of u∗

equals the weak derivative of u.

[Hint: you may wish to consider the function v(y) := u∗(y)−u∗(x)−Du(x) · (y−x)
for some appropriately chosen x.]

You may assume standard results concerning approximation of Sobolev functions as well
as the Lebesgue differentiation theorem in the following form: given f ∈ L

p
loc.(R

n), for
almost every x ∈ R

n:

1

|Qr(x)|

∫

Qr(x)
|f(y)− f(x)|p dy → 0, as r → 0.
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a) State and prove the Lax–Milgram theorem for a bilinear form B defined on a real
Hilbert space H.

b) Let U ⊂ R
n be open and bounded, with C∞ boundary. Let L be the linear

differential operator which acts on sufficiently regular functions u : U → R by:

Lu := −
n
∑

i,j=1

(

aij(x)uxi

)

xj
+

n
∑

i=1

bi(x)uxi
+ c(x)u

where aij , bi, c ∈ C∞(U ) and aij = aji. Consider the Robin boundary value problem:



















(L+ λ)u = f in U,

n
∑

i,j=1

aijuxi
νj + βu = 0 on ∂U,

(⋆)

where ν is the outward unit normal to ∂U , β ∈ C∞(∂U) and λ ∈ R.

i) State what it means for L to be uniformly elliptic.

ii) Find a weak formulation for (⋆). In particular you should demonstrate that
u ∈ C2(U ) is a classical solution of (⋆) if and only if it satisfies your criterion
to be a weak solution.

iii) Show that if λ > 0 is sufficiently large, (⋆) admits a unique weak solution
u ∈ H1(U) for any f ∈ L2(U). If you apply the result from part a), you
should demonstrate carefully that the hypotheses are satisfied.

[You may assume that there exists K > 0 such that for any u ∈ H1(U) the inequality:

‖Tu‖2L2(∂U) 6 K ‖u‖L2(U) ‖Du‖L2(U) ,

holds, where T : H1(U) → L2(∂U) is the trace operator.]
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Let U ⊂ R
n be an open, bounded set, with C∞ boundary. Let L be the linear

differential operator which acts on sufficiently regular functions u : U → R by:

Lu := −
n
∑

i,j=1

(

aij(x)uxi

)

xj
+

n
∑

i=1

bi(x)uxi
+ c(x)u,

where aij = aji, bi, c ∈ C∞(U) for i, j = 1, . . . , n, and aij = aji satisfy the uniform
ellipticity condition.

a) Define the bilinear form B : H1
0 (U)×H1

0 (U) → R associated to the boundary value
problem for L with homogeneous Dirichlet conditions, and state what it means for
L to be formally self-adjoint and positive.

b) Assume L is uniformly elliptic, formally self-adjoint and positive.

i) Show that B is a new inner product on H1
0 (U) which defines an equivalent

norm to ‖·‖H1(U).

ii) For l = 0, 1, 2, . . ., define a family of bilinear forms by

((u, v))2l := (Llu,Llv), ((u, v))2l+1 := B[Llu,Llv],

with (·, ·) the standard inner product on L2(U). Show that ((·, ·))k is an inner
product on H1

0 (U)∩Hk(U) which defines an equivalent norm to ‖·‖Hk(U) for
any k = 0, 1, 2, . . ..

iii) Show that there exists an orthonormal basis for L2(U), (wm)∞m=1, together
with a sequence of positive numbers, (λm)∞m=1, such that for any u ∈ L2(U)
we have:

u ∈ H1
0 (U) ∩Hk(U) ⇐⇒

∞
∑

m=1

(λm)k(u,wm)2 <∞.

c) Let UT = (0, T ) × U ; Σ0 = {0} × U ; ∂∗UT = (0, T ) × ∂U . Consider the following
initial-boundary value problem:







ut + Lu = 0 in UT

u = ψ on Σ0

u = 0 on ∂∗UT

where L is a uniformly elliptic, formally self-adjoint and positive operator on U

whose coefficients are independent of t. Such problems are known as parabolic.
By explicitly constructing the solution in terms of wm, λm, show that there exists
u ∈ C∞(UT ) such that:

• For any t > 0, u(t, ·) ∈ C∞(U) and u(t, ·) = 0 on ∂U ;

• ut + Lu = 0 holds everywhere in UT ;

• lim
t→0

‖u(t, ·) − ψ(·)‖L2(U) = 0.

[You may assume any results you require from the course concerning elliptic operators.]
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a) Let U ⊂ R
n be open and bounded, with C∞ boundary. Set UT = U × (0, T ),

∂∗UT = ∂U × [0, T ] and let Σt = U × {t} for t ∈ [0, T ]. Suppose

Lu := −

n
∑

i,j=1

(

aij(x, t)uxi

)

xj
+

n
∑

i=1

bi(x, t)uxi
+ c(x, t)u

where aij , bi, c ∈ C∞(UT ) and a
ij = aji satisfy the uniform ellipticity condition.

i) Write down the definition for a weak solution u ∈ H1(UT ) of the hyperbolic
initial-boundary value problem:







utt + Lu = f in UT ,

u = ψ0, ut = ψ1 on Σ0,

u = 0 on ∂∗UT .

where f ∈ L2(UT ), ψ0 ∈ H1
0 (U), ψ1 ∈ L2(U). You need not justify your

answer.

ii) Show that a weak solution, if it exists, is unique.

iii) Suppose that N is the surface N = {t = τ(x)} for some τ ∈ C1(U). If N is
everywhere characteristic, find an equation satisfied by τ .

b) Consider the linear equation:

∂2u

∂t2
−

∂

∂ρ

(

(1− ρ2)
∂u

∂ρ

)

+
∂

∂ρ

(

ρ
∂u

∂t

)

+ ρ
∂2u

∂ρ∂t
= 0

for u : R2 → R.

i) Show that this equation is hyperbolic everywhere in R
2, and find and sketch

the characteristic surfaces. [Hint: In view of the dimension, these will in fact
be curves.]

ii) Suppose that u ∈ C2(R2). Show that if u(ρ, 0) = ut(ρ, 0) = 0 for −1 < ρ < 1,
then u(ρ, t) = 0 for −1 < ρ < 1, t ∈ R. Comment on the connection with
part b)i).
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