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Let F be a field. Let n be a positive integer and let λ and µ be partitions of n. Let
Sλ be the FSn-Specht module, and let Mµ be the FSn-permutation module (as defined
in the lectures). Let φ ∈ HomFSn(S

λ,Mµ) be a non-zero FSn-homomorphism between Sλ

and Mµ.

(i) Prove that if there exists (an extension) Φ ∈ HomFSn(M
λ,Mµ) such that Φ|Sλ = φ

then λ dominates µ. You can use results from the course, if appropriately stated (without
proof).

From now on let F = C be the field of complex numbers. Denote by πµ the complex
character afforded by Mµ, and denote by χλ the irreducible complex character afforded
by Sλ. Let n and k be integers such that 0 6 k 6 n/2.

(ii) Prove that
〈

π(n−k,k) ↓Sn−1
, χρ

〉

= 0, for all ρ partitions of n − 1 such that ℓ(ρ) > 3.
(Here ℓ(ρ) denotes the number of (non-zero) parts of ρ).

(iii) Prove that

M (n−k,k) and
k

⊕

j=0

S(n−j,j)

are isomorphic as CSn-modules.

2

Let n, p and r be positive integers and let λ be a partition of n. Denote by H(λ)
the multiset of hook lengths of λ.

(i) Prove that if pr ∈ H(λ) then {p, r} ⊆ H(λ). You can use results from the course, if
appropriately stated (without proof).

(ii) Suppose now that pr 6 n and consider the converse of the statement in (i), namely:
if {p, r} ⊆ H(λ) then pr ∈ H(λ).

Prove the above statement, or find a counterexample to it.

(iii) Let Y(λ) be the Young diagram of λ and let (i, j) ∈ Y(λ). Denote by H(i,j)(λ) the
(i, j)-hook of λ and let hi,j(λ) = |H(i,j)(λ)|. Suppose that the hook length hi,j(λ) = pr.
Show that

|{(x, y) ∈ H(i,j)(λ) : p | hx,y(λ)}| = r.
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Let p be an odd prime. Let n,m and k be integers such that 0 6 m < pk and
such that n = apk +m for some a ∈ {1, 2, . . . , p − 1}. Let λ be a partition of n and let
γ := Cpk(λ) be the p

k-core of λ. Denote by H(λ) the multiset of hook lengths of λ. Prove,
or find a counterexample to, each of the following statements.

(i) p does not divide χλ(1) if and only if wpk(λ) = a and p does not divide χγ(1).

(ii) If apk ∈ H(λ) then p does not divide χλ(1).

(iii) If p does not divide χλ(1) then apk ∈ H(λ).

You may use any result from the lectures but should include a clear statement of
such a result.
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Given a natural number N , we let νp(N) be such that N = pνp(N) · M , for some
number M coprime to p.

Let n =
∑

k>0 αkp
k be the p-adic expansion of n, where 0 6 αj 6 p − 1 for all

j ∈ N0. Let λ be a partition of n and denote by H(λ) the multiset of hook lengths of
λ. Let TC(λ) be the p-core tower of λ and let TQ(λ) be the p-quotient tower of λ. It is
known that:

νp(χ
λ(1)) =

(

∑

k>0

|TC(λ)k| −
∑

k>0

αk

)

/(p − 1).

A key step in the proof of the above identity is to show that:

(⋆) νp
(

∏

h∈H(λ)

h
)

=
∑

r>1

|TQ(λ)r|.

(i) Prove that the identity in (⋆) holds. You can use previous results from the course, if
appropriately stated (without proof).

Let p be a prime number. Let m,w and n be positive integers such that n = wp+m.
Let γ be a p-core partition of m. Let B and C be the sets defined by:

B = {χλ ∈ Irr(Swp) : Cp(λ) = ∅} and C = {χµ ∈ Irr(Sn) : Cp(µ) = γ}.

(ii) Suppose that 0 6 m < p. Prove that |B ∩ Irrp′(Swp)| = |C ∩ Irrp′(Sn)| and that
|B| = |C|.

(iii) Suppose that m > p. Compute |C ∩ Irrp′(Sn)|.
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