

MATHEMATICAL TRIPOS Part III

Friday, 8 June, 2018 9:00 am to 12:00 pm

PAPER 103

REPRESENTATION THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let \mathbb{F} be a field. Let *n* be a positive integer and let λ and μ be partitions of *n*. Let S^{λ} be the $\mathbb{F}S_n$ -Specht module, and let M^{μ} be the $\mathbb{F}S_n$ -permutation module (as defined in the lectures). Let $\phi \in \operatorname{Hom}_{\mathbb{F}S_n}(S^{\lambda}, M^{\mu})$ be a non-zero $\mathbb{F}S_n$ -homomorphism between S^{λ} and M^{μ} .

(i) Prove that if there exists (an extension) $\Phi \in \operatorname{Hom}_{\mathbb{F}S_n}(M^{\lambda}, M^{\mu})$ such that $\Phi|_{S^{\lambda}} = \phi$ then λ dominates μ . You can use results from the course, if appropriately stated (without proof).

From now on let $\mathbb{F} = \mathbb{C}$ be the field of complex numbers. Denote by π^{μ} the complex character afforded by M^{μ} , and denote by χ^{λ} the irreducible complex character afforded by S^{λ} . Let n and k be integers such that $0 \leq k \leq n/2$.

(ii) Prove that $\langle \pi^{(n-k,k)} \downarrow_{S_{n-1}}, \chi^{\rho} \rangle = 0$, for all ρ partitions of n-1 such that $\ell(\rho) \ge 3$. (Here $\ell(\rho)$ denotes the number of (non-zero) parts of ρ).

(iii) Prove that

$$M^{(n-k,k)}$$
 and $\bigoplus_{j=0}^{k} S^{(n-j,j)}$

are isomorphic as $\mathbb{C}S_n$ -modules.

$\mathbf{2}$

Let n, p and r be positive integers and let λ be a partition of n. Denote by $\mathcal{H}(\lambda)$ the multiset of hook lengths of λ .

(i) Prove that if $pr \in \mathcal{H}(\lambda)$ then $\{p, r\} \subseteq \mathcal{H}(\lambda)$. You can use results from the course, if appropriately stated (without proof).

(ii) Suppose now that $pr \leq n$ and consider the converse of the statement in (i), namely: if $\{p, r\} \subseteq \mathcal{H}(\lambda)$ then $pr \in \mathcal{H}(\lambda)$.

Prove the above statement, or find a counterexample to it.

(iii) Let $\mathcal{Y}(\lambda)$ be the Young diagram of λ and let $(i, j) \in \mathcal{Y}(\lambda)$. Denote by $H_{(i,j)}(\lambda)$ the (i, j)-hook of λ and let $h_{i,j}(\lambda) = |H_{(i,j)}(\lambda)|$. Suppose that the hook length $h_{i,j}(\lambda) = pr$. Show that

$$|\{(x,y) \in H_{(i,j)}(\lambda) : p \mid h_{x,y}(\lambda)\}| = r.$$

UNIVERSITY OF

3

Let p be an odd prime. Let n, m and k be integers such that $0 \leq m < p^k$ and such that $n = ap^k + m$ for some $a \in \{1, 2, \ldots, p-1\}$. Let λ be a partition of n and let $\gamma := C_{p^k}(\lambda)$ be the p^k -core of λ . Denote by $\mathcal{H}(\lambda)$ the multiset of hook lengths of λ . Prove, or find a counterexample to, each of the following statements.

(i) p does not divide $\chi^{\lambda}(1)$ if and only if $w_{p^k}(\lambda) = a$ and p does not divide $\chi^{\gamma}(1)$.

(ii) If $ap^k \in \mathcal{H}(\lambda)$ then p does not divide $\chi^{\lambda}(1)$.

(iii) If p does not divide $\chi^{\lambda}(1)$ then $ap^k \in \mathcal{H}(\lambda)$.

You may use any result from the lectures but should include a clear statement of such a result.

UNIVERSITY OF

 $\mathbf{4}$

Given a natural number N, we let $\nu_p(N)$ be such that $N = p^{\nu_p(N)} \cdot M$, for some number M coprime to p.

Let $n = \sum_{k \ge 0} \alpha_k p^k$ be the *p*-adic expansion of *n*, where $0 \le \alpha_j \le p-1$ for all $j \in \mathbb{N}_0$. Let λ be a partition of *n* and denote by $\mathcal{H}(\lambda)$ the multiset of hook lengths of λ . Let $T^C(\lambda)$ be the *p*-core tower of λ and let $T^Q(\lambda)$ be the *p*-quotient tower of λ . It is known that:

$$\nu_p(\chi^{\lambda}(1)) = \left(\sum_{k \ge 0} |T^C(\lambda)_k| - \sum_{k \ge 0} \alpha_k\right) / (p-1).$$

A key step in the proof of the above identity is to show that:

$$(\star) \quad \nu_p \Big(\prod_{h \in \mathcal{H}(\lambda)} h\Big) = \sum_{r \ge 1} |T^Q(\lambda)_r|.$$

(i) Prove that the identity in (\star) holds. You can use previous results from the course, if appropriately stated (without proof).

Let p be a prime number. Let m, w and n be positive integers such that n = wp + m. Let γ be a p-core partition of m. Let B and C be the sets defined by:

$$B = \{\chi^{\lambda} \in \operatorname{Irr}(S_{wp}) : C_p(\lambda) = \emptyset\} \text{ and } C = \{\chi^{\mu} \in \operatorname{Irr}(S_n) : C_p(\mu) = \gamma\}.$$

(ii) Suppose that $0 \leq m < p$. Prove that $|B \cap \operatorname{Irr}_{p'}(S_{wp})| = |C \cap \operatorname{Irr}_{p'}(S_n)|$ and that |B| = |C|.

(iii) Suppose that $m \ge p$. Compute $|C \cap \operatorname{Irr}_{p'}(S_n)|$.

END OF PAPER

Part III, Paper 103