MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2018 $\,$ 1:30 pm to 4:30 pm

PAPER 102

LIE ALGEBRAS AND THEIR REPRESENTATIONS

Attempt **ALL** questions.

There are **FIVE** questions in total.

Questions 1 and 4 are worth 15 points each. Question 2 is worth 30 points. Questions 3 and 5 are worth 20 points each.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** Triangular graph paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) State 3 equivalent conditions for a finite-dimensional Lie algebra \mathfrak{g} over \mathbb{C} to be *semisimple*, briefly defining any terms you use.

Now let \mathfrak{h} be a 3-dimensional Lie algebra over \mathbb{C} with basis x, y, z, and bracket determined by [xy] = z, [xz] = [yz] = 0. [Note that you do not need to prove \mathfrak{h} forms a Lie algebra.]

(b) Is \mathfrak{h} semisimple? Prove or disprove it. [You may use any of the equivalent conditions from part (a), but prove any other result you use.]

(c) Is every finite-dimensional representation of $\mathfrak h$ completely reducible? Prove it or give a counterexample.

$\mathbf{2}$

Let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C} of rank ℓ with Cartan subalgebra \mathfrak{t} and corresponding root system Φ . Let Δ be a root basis in Φ , and let Φ^+ be the corresponding set of positive roots. Given $x \in \mathfrak{g}$, let $Z_{\mathfrak{g}}(x) := \{y \in \mathfrak{g} \mid [yx] = 0\}$ be the centralizer of x in \mathfrak{g} . Given $\alpha \in \Phi$, let

$$\mathfrak{m}_{lpha} = \mathfrak{g}_{lpha} \oplus [\mathfrak{g}_{lpha}, \mathfrak{g}_{-lpha}] \oplus \mathfrak{g}_{-lpha}.$$

[You may use without proof that \mathfrak{m}_{α} is a subalgebra of \mathfrak{g} isomorphic to \mathfrak{sl}_{2} .]

(a) Define what it means for $\lambda \in \mathfrak{t}^*$ to be a *dominant weight*. Given a representation V of \mathfrak{g} , define what it means for $v \in V$ to be a *highest-weight vector*.

(b) Let V be a finite-dimensional representation of \mathfrak{g} . Suppose $v \in V_{\lambda}$ is a highestweight vector. Prove that λ is a dominant weight. [You may use any results about the representation theory of \mathfrak{sl}_2 and about the root-space decomposition of \mathfrak{g} without proof.]

(c) Now suppose Φ is G_2 and $\alpha \in \Phi$ is a short root. Decompose the adjoint representation of \mathfrak{g} into irreducible \mathfrak{m}_{α} -modules, i.e. find integers n_1, \ldots, n_m such that $\mathfrak{g} \simeq V(n_1) \oplus \ldots \oplus V(n_m)$ as a representation of $\mathfrak{m}_{\alpha} \simeq \mathfrak{sl}_2$. Given a nonzero element $x \in \mathfrak{g}_{\alpha}$, find dim $Z_{\mathfrak{g}}(x)$. Briefly explain your logic.

(d) Now Φ is again arbitrary. Show that if $x \in \mathfrak{g}_{\alpha}$ for some $\alpha \in \Phi$, then $\dim \mathbb{Z}_{\mathfrak{g}}(x) \geq 3\ell - 2$. [You may use any results from the course.]

UNIVERSITY OF CAMBRIDGE

3

Let

$$\mathfrak{g} = \mathfrak{so}_6 = \{ x \in \mathfrak{gl}_6(\mathbb{C}) \mid xJ + Jx^T = 0 \}$$

where

$$J = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Let \mathfrak{t} be the space of diagonal matrices in \mathfrak{g} , and let Φ be the roots of \mathfrak{g} with respect to \mathfrak{t} . For parts (a) - (d), you do not need to provide proofs for your answers.

(a) Explicitly describe the elements of Φ as maps $\mathfrak{t} \to \mathbb{C}$.

(b) Identify a root basis $\Delta \subset \Phi$. Draw and label the Dynkin diagram of \mathfrak{g} .

(c) For each $\alpha_i \in \Delta$, explicitly describe the image under the simple reflection w_{α_i} of each element of Δ .

(d) Describe an automorphism of Φ that is not given by an element of the Weyl group.

(e) Briefly explain why $\mathfrak{so}_6 \simeq \mathfrak{sl}_4$. [You may use any result from the course.]

$\mathbf{4}$

Let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C} with Cartan subalgebra \mathfrak{t} and corresponding root system Φ . Let $\Delta = \{\alpha_1, ..., \alpha_\ell\}$ be a choice of root basis and let $\{\omega_1, ..., \omega_\ell\}$ be the fundamental weights with respect to this choice of Δ .

(a) State the Weyl dimension formula, briefly defining the notation you use.

(b) Let $\mathfrak{g} = \mathfrak{sp}_4(\mathbb{C})$, and assume α_1 is a short root. Let $\lambda = a\omega_1 + b\omega_2$ be a dominant weight. Using the Weyl dimension formula, find a formula for dim $V(\lambda)$ in terms of a and b. [You do not need to prove the Weyl dimension formula.]

(c) Let $\mathfrak{g} = \mathfrak{sp}_4(\mathbb{C})$. Let V be the defining 4-dimensional representation of \mathfrak{g} . Find the highest weight of V in terms of ω_1 and ω_2 . Decompose $V \otimes V$ into irreducible subrepresentations, i.e. find dominant weights $\lambda_1, ..., \lambda_n$ such that $V \otimes V \simeq V(\lambda_1) \oplus ... \oplus V(\lambda_n)$ as a representation of \mathfrak{g} .

UNIVERSITY OF

 $\mathbf{5}$

Let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C} with Cartan subalgebra \mathfrak{t} , corresponding root system Φ , Weyl group W, and weight lattice X. Let Δ be a root basis in Φ , and let Φ^+ be the corresponding set of positive roots. Given $\lambda \in X$, let

4

$$W\lambda = \{w(\lambda) \mid w \in W\}$$

be the orbit of λ under the Weyl group. An irreducible representation V of \mathfrak{g} is called *minuscule* if there exists $\lambda \in X$ such that if $V_{\mu} \neq 0$ then $\mu \in W\lambda$. [In the following, you may use any results from the course as long as you state them clearly.]

(a) Suppose $V(\lambda)$ is a minuscule representation of \mathfrak{g} for $\lambda \in X$. Write the formal character of $V(\lambda)$ in terms of $W\lambda$.

(b) Show that if λ is a dominant weight and $V(\lambda)$ is minuscule, then $\langle \lambda, \check{\alpha} \rangle \leq 1$ for all $\alpha \in \Phi^+$.

(c) Show that if $X = \mathbb{Z}\Phi$, then \mathfrak{g} has no nontrivial minuscule irreducible representations.

END OF PAPER