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(a) State 3 equivalent conditions for a finite-dimensional Lie algebra g over C to be
semisimple, briefly defining any terms you use.

Now let h be a 3-dimensional Lie algebra over C with basis x, y, z, and bracket
determined by [xy] = z, [xz] = [yz] = 0. [Note that you do not need to prove h forms a
Lie algebra.]

(b) Is h semisimple? Prove or disprove it. [You may use any of the equivalent
conditions from part (a), but prove any other result you use.]

(c) Is every finite-dimensional representation of h completely reducible? Prove it or
give a counterexample.

2

Let g be a semisimple Lie algebra over C of rank ℓ with Cartan subalgebra t and
corresponding root system Φ. Let ∆ be a root basis in Φ, and let Φ+ be the corresponding
set of positive roots. Given x ∈ g, let Zg(x) := {y ∈ g | [yx] = 0} be the centralizer of x
in g. Given α ∈ Φ, let

mα = gα ⊕ [gα, g−α]⊕ g−α.

[You may use without proof that mα is a subalgebra of g isomorphic to sl2.]

(a) Define what it means for λ ∈ t∗ to be a dominant weight. Given a representation
V of g, define what it means for v ∈ V to be a highest-weight vector.

(b) Let V be a finite-dimensional representation of g. Suppose v ∈ Vλ is a highest-
weight vector. Prove that λ is a dominant weight. [You may use any results about the
representation theory of sl2 and about the root-space decomposition of g without proof.]

(c) Now suppose Φ is G2 and α ∈ Φ is a short root. Decompose the adjoint
representation of g into irreducible mα-modules, i.e. find integers n1, ..., nm such that
g ≃ V (n1)⊕ ...⊕V (nm) as a representation of mα ≃ sl2. Given a nonzero element x ∈ gα,
find dimZg(x). Briefly explain your logic.

(d) Now Φ is again arbitrary. Show that if x ∈ gα for some α ∈ Φ, then
dimZg(x) > 3ℓ− 2. [You may use any results from the course.]
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Let
g = so6 = {x ∈ gl6(C) | xJ + JxT = 0}

where

J =

















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

















.

Let t be the space of diagonal matrices in g, and let Φ be the roots of g with respect to t.
For parts (a) - (d), you do not need to provide proofs for your answers.

(a) Explicitly describe the elements of Φ as maps t → C.

(b) Identify a root basis ∆ ⊂ Φ. Draw and label the Dynkin diagram of g.

(c) For each αi ∈ ∆, explicitly describe the image under the simple reflection wαi

of each element of ∆.

(d) Describe an automorphism of Φ that is not given by an element of the Weyl
group.

(e) Briefly explain why so6 ≃ sl4. [You may use any result from the course.]
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Let g be a semisimple Lie algebra over C with Cartan subalgebra t and corresponding
root system Φ. Let ∆ = {α1, ..., αℓ} be a choice of root basis and let {ω1, ..., ωℓ} be the
fundamental weights with respect to this choice of ∆.

(a) State the Weyl dimension formula, briefly defining the notation you use.

(b) Let g = sp4(C), and assume α1 is a short root. Let λ = aω1+bω2 be a dominant
weight. Using the Weyl dimension formula, find a formula for dimV (λ) in terms of a and
b. [You do not need to prove the Weyl dimension formula.]

(c) Let g = sp4(C). Let V be the defining 4-dimensional representation of
g. Find the highest weight of V in terms of ω1 and ω2. Decompose V ⊗ V into
irreducible subrepresentations, i.e. find dominant weights λ1, ..., λn such that V ⊗ V ≃
V (λ1)⊕ ...⊕ V (λn) as a representation of g.
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Let g be a semisimple Lie algebra over C with Cartan subalgebra t, corresponding
root system Φ, Weyl group W , and weight lattice X. Let ∆ be a root basis in Φ, and let
Φ+ be the corresponding set of positive roots. Given λ ∈ X, let

Wλ = {w(λ) | w ∈ W}

be the orbit of λ under the Weyl group. An irreducible represenation V of g is called
minuscule if there exists λ ∈ X such that if Vµ 6= 0 then µ ∈ Wλ. [In the following, you
may use any results from the course as long as you state them clearly.]

(a) Suppose V (λ) is a minuscule representation of g for λ ∈ X. Write the formal
character of V (λ) in terms of Wλ.

(b) Show that if λ is a dominant weight and V (λ) is minuscule, then 〈λ, α̌〉 6 1 for
all α ∈ Φ+.

(c) Show that if X = ZΦ, then g has no nontrivial minuscule irreducible represen-
tations.

END OF PAPER
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