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Throughout this exam, ring shall be taken to refer to a commutative ring with
identity.

1
Let R and S be rings, and let ¢: R — S be a ring homomorphism.

(a) Define the prime spectrum Spec(R) and the Zariski topology on Spec(R). Prove
that the Zariski topology is in fact a topology.

(b) Show that ¢ induces a continuous map of topological spaces f: Spec(S) —
Spec(R).

(c) Prove that f(Spec(S)) is dense in Spec(R) if and only if ker(p) is contained in
the nilradical of R.

(d) Describe the set Spec(R[z]) and the function f: Spec(C[z]) — Spec(R]x])
induced by the inclusion ¢: R[z] < C[z]. [You may use any results about factorization of
polynomials in R[xz], provided you state them clearly.]

Let R be a ring and P C R be a prime ideal.
(a) Define the localisation Rp and show that it is an R-algebra.
(b) When is the natural map R — Rp injective? Justify your answer.

(c) Suppose Rp contains no non-zero nilpotent elements for any prime ideal P C R.
Can R contain non-zero nilpotent elements? Justify your answer. [You must prove any
results about local properties that you use.]

(d) Suppose Rp contains no non-zero zero divisors for any prime ideal P C R. Can
R contain non-zero zero divisors? Justify your answer. [You must prove any results about
local properties that you use.]

(e) Let R be the infinite direct product kN of a field k with itself countably many
times. Show that R is not Noetherian, but Rp is Noetherian for all prime ideals P C R.
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3 Let R be a ring and P C R be a prime ideal.
Define a P-primary ideal.

Which of the following statements are true? Give proofs or counterexamples as
appropriate.

(a) An intersection of finitely many P-primary ideals is P-primary.
(b) If P is maximal and I is P-primary, then I is a power of P.

(c) Let n be a positive integer. Then P™ is P-primary if and only if P" = pm,
where P(™ denotes the nth symbolic power of P.

(d) Every irreducible ideal in a Noetherian ring is primary.

(e) Every ideal in a Noetherian ring can be uniquely written as a finite intersection of
primary ideals.

(a) Define what it means for a ring to be Noetherian and Artinian.

(b) Let R be a Noetherian ring. Is the power series ring R[[z]] necessarily
Noetherian? Justify your answer, proving any results about Noetherian rings that you
use.

(¢c) Let R be a ring and suppose that R[[z]] is Noetherian. Is R necessarily
Noetherian? Justify your answer, proving any results about Noetherian rings that you
use.

(d) Let R be an Artinian ring. Is R[[z]] necessarily Artinian? Justify your answer.

(e) Let R be a Noetherian ring and S a ring satisfying R C S C R[x]. Is S necessarily
Noetherian? Justify your answer.

(a) Define what it means for a ring to be a Dedekind domain.
(b) State the unique factorisation theorem for ideals in a Dedekind domain.

(c) Prove that any ideal in a Dedekind domain is generated by at most two elements.
[You must clearly state any results that you use.]

(d) Give an example of a Dedekind domain that is not a principal ideal domain.
Justify your answer.
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(a) Define the Krull dimension of a ring.
(b) What is the Krull dimension of a discrete valuation ring? Justify your answer.

(c) Let R be a ring and S C R a subring. Define what it means for R to be integral
over S.

(d) Let R be integral over S. Prove that R and S have the same Krull dimension.
[You must state clearly any results that you use.]

(e) Consider the integral extension Z C Z[i]. Let P be a prime ideal of Z[i] and let
@ = PNZ denote the corresponding prime ideal of Z. Is the localisation Z[i]p necessarily
integral over Zg? Justify your answer.
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