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Answer all parts of the question.

(a) Explain why the coarse-grained dynamics of an equilibrium system with micro-
scopic time-reversal symmetry must obey

PF

FB

= exp[−β(F2 − F1)]

where PF,B are forward and backward path probabilities, β = 1/kBT , and F2 and F1 are
the final and initial free energies.

(b) A certain system with a non-conserved scalar order parameter φ(r, t) is described
by the stochastic field equation

φ̇(r, t) = −Γ
δF

δφ(r)
+ η(r, t)

where Γ is a constant and η is a Gaussian process that obeys 〈η(r, t)η(r′, t′)〉 = σ2δ(r −
r′)δ(t − t′). Show, using the result of part (a) or otherwise, that σ2 = 2kBTΓ.

(c) Consider the case where F =
∫

F(φ,∇φ)dr with F = a
2
φ2 + κ

2
(∇φ)2 and a > 0.

Give the equation of motion for a Fourier component φq(t) of the order parameter, and
show that this is solved by

φq(t) = φq(0) exp[−r(q)t] +

∫ t

0

ηq(t
′) exp[−(t− t′)r(q)] dt′

where you should give an expression for the decay rate r(q), but are not asked to prove
that 〈ηq(t)ηq′ , t′)〉 = 2kBTΓδq,−q′δ(t − t′).

(d) Consider such a system that is prepared in an equilibrium state with a = a0 at
time t = 0. Suppose conditions are then suddenly altered so that a = a1 for t > 0. (Both
a0 and a1 are positive.) Show that the equal-time correlator Sq(t) = 〈|φq(t)|

2〉 obeys

Sq(t) = Sq(0) exp[−2r(q)t] +
kBT

a1 + κq2
(

1− exp[−2r(q)t]
)

where again you should give an expression for r(q).

(e) Suppose that instead the system is prepared with an initial condition comprising
a localized density peak: φ(r, 0) = Aδ(r − r′). Without detailed derivation, describe the
resulting time evolution.
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Answer all parts of the question.

For an incompressible binary fluid mixture, the hydrodynamic-level equations read

(∂t + v.∇)φ = −∇.J (1)

J = −M∇µ (2)

ρ(∂t + v.∇)v = η∇2v −∇P − φ∇µ (3)

∇.v = 0 (4)

µ = aφ+ bφ3 − κ∇2φ (5)

(a) Without deriving them, briefly outline why the equations have this form.

(b) In the late-stage coarsening of a bicontinuous fluid mixture in three dimensions,
it is argued that (3) can be schematically represented for scaling purposes as

ρ(αL̈+ βL̇2/L) = ηγL̇/L2 + σδ/L2 (6)

with L(t) the characteristic domain size, σ(a, b, κ) an interfacial tension, and α, β, γ, δ
dimensionless quantities of order unity. What are the assumptions behind (6)? Noting
that the only combinations of parameters ρ, σ, η with units of length and of time are
respectively L0 = η2/ρσ and t0 = η3/ρσ2, deduce that L(t)/L0 = f(t/t0) and find a
nondimensionalised version of (6) satisfied by the function f(u).

(c) Find power-law scalings for f(u) that cause L(t) to become independent of
(i) ρ and (ii) η, and show that the respective ‘viscous hydrodynamic’ and ‘inertial
hydrodynamic’ scalings capture the primary balance of terms in (6) at (i) small u and
(ii) large u.

(d) Consider now the late-stage coarsening of a bicontinuous fluid mixture that takes
place within a three dimensional microporous medium (such as a polymer network). This
can be modelled by replacing the viscous term in (3) with a local drag term on the fluid:

ρ(∂t + v.∇)v = −η̄v −∇P − φ∇µ (7)

Show that now L(t)/L1 = g(t/t1) where L3
1
= σρ/η̄2 and t1 = ρ/η̄.

(e) Show that if g(u) ∼ uy with y > 0, the inertial terms are always negligible
compared to the local drag term at large u. Find the power-law scaling that arises in the
long time limit in this model.
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Answer all parts of the question.

In a certain 2D nematic, the local free energy density is (in the “one elastic constant”
approximation)

F = aTr(Q2) + b(Tr(Q2))2 +
K

2
|∇.Q|2

where b and K are positive constants, and ∇.Q ≡ ∇iQij .

(a) Explain why the order parameter for a nematic is a traceless symmetric tensor
Q. Show that for a < 0 the free energy is minimized by a uniform order parameter field
Qij = λ0[n̂in̂j − δij/2], where n is a constant unit vector, and find λ0 in terms of a and b.

(b) In a certain ‘vortex’ configuration of topological charge q = +1, the director
n(r) at radius r from a fixed origin r = 0 lies tangential to the circle at that radius, so
that

Qij(r) = λ(r)[θiθj − δij/2]

where r ≡ r(cos θ, sin θ); unit vector θ ≡ (− sin θ, cos θ), and λ(r) is the local strength of
the nematic ordering. Show that the local free energy density can then be written

F =
a

2
λ2 +

b

4
λ4 +

K

2

∣

∣

∣

∣

((∇λ).θ)θ + λ(∇.θ)θ + λ(θ.∇)θ −
∇λ

2

∣

∣

∣

∣

2

(c) Noting that λ differs from λ0 only in a local region near the vortex core (of
size r0), establish that the free energy ∆F of the vortex, relative to a defect-free state, is
dominated by a term ∝ Kλ2

0
ln(L/r0). What determines the large-scale cutoff, L?

(d) Is this defect stable (i) topologically? (ii) energetically?

(e) Suppose a 2D nematic is prepared in an initial state with a vortex of topological
charge +1 separated by a large distance from an ‘antivortex’ of topological charge −1.
Describe what you expect to happen en route to a final, defect-free state.
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