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An elastic filament of length L, radius a, density ρf , and elastic modulus A is
immersed in a fluid of viscosity µ and density ρ. The filament extends along the positive
x-axis and its left end is clamped at the origin, while its right end is free. Under the action
of gravity, and assuming ρf > ρ, the filament will bend downwards.

(a) Write down the energy functional for the filament, including the contributions
of bending elasticity and the gravitational potential energy.

(b) Using the ideas of resistive force theory, find the equation of motion of the
filament for small-amplitude deformations h(x, t) in terms of ζ⊥, the drag coefficient for
motion perpendicular to the filament’s long axis. State the boundary conditions that
hold at x = 0 and x = L. Solve for the steady-state profile after transients have died
away. From this solution, explain how the filament acts as a Hookean spring under the
total gravitational force on the filament, and using the displacement at the free end as a
measure of the deflection, calculate its effective spring constant. Show consistency using
dimensional analysis.

(c) If gravity is now turned off, the filament relaxes back to the x-axis. Find the
dominant long-time behaviour of h(x, t) as it approaches 0.
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The constitutive relationship for a non-Newtonian fluid, termed the co-rotational Maxwell
fluid, relates the deviatoric stress in the fluid, σ, to the shear rate tensor, γ̇, as

σ + λ
Dσ

Dt
= µγ̇, (†)

where λ and µ are constants and where the objective co-rotational derivative, D

Dt , is defined
for a tensor a as

Da

Dt
=

∂a

∂t
+ u · ∇a+

1

2
(ω · a− a · ω) ,

where the tensor ω is twice the antisymmetric part of the velocity gradient tensor,
ω = ∇u−∇uT .

(a) What is meant by the statement that D

Dt is objective? Give another example of
an objective derivative and give an example that is not objective.

(b) Under small deformations, the nonlinear constitutive relationship in Eq. (†)
maybe be linearised. What is the name of the flow described by the linearised version
of Eq. (†) ? What are the physical interpretations of µ and λ for that linearised fluid?
Explain briefly why that linearised fluid has no normal stress differences.

(c) The fluid characterised by the full nonlinear constitutive relationship in Eq. (†)
undergoes steady two-dimensional shear with shear rate γ̇. Determine its steady shear
viscosity and show that it is shear-thinning. Determine the two normal stress differences.
Are their signs and relative magnitudes consistent with experiments?
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Experiments by Adler have shown that a cloud of motile bacteria can move steadily
down a liquid-filled capillary tube as they consume nutrient. Keller and Segel proposed
the following model for this process, in which nutrient diffusion is neglected,

∂b

∂t
= D

∂2b

∂x2
−

∂

∂x

(

χb
∂c

∂x

)

, (1)

∂c

∂t
= −kb (2)

where the bacterial and nutrient densities are b(x, t) and c(x, t), respectively, and the
consumption rate k and diffusion constant D are assumed constant. The chemotactic
response coefficient χ is taken to have the singular form

χ =
α

c
,

where α is a constant.

(a) Assume a solution for b and c in the form of a rightward traveling wave, with as
yet unknown speed v, and find the equations for the associated traveling-wave functions
B(z) and C(z), with z = x− vt.

(b) Solve the equations in (a) and show that if α > D,

lim
z→∞

C = C∞, lim
z→∞

B = lim
z→−∞

C = lim
z→−∞

B = 0.

Show that by suitable choice of an integration constant that

C

C∞

=
(

1 + e−ξ
)−1/(µ−1)

,

where ξ = vz/D, and µ = α/D. Show that C monotonically increases, whereas B has
a single maximum. Sketch graphs of these functions. What is the biological meaning of
C∞?

(c) From the governing traveling-wave equations show that the speed v satisifes

v = Nk/aC∞,

where N is the total number of bacteria in the tube (assumed infinity long) and a is its
cross-sectional area. Comment on the depedence of v on the parameters.
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(a) Consider two incompressible solutions of Stokes equations with velocities u and
û, stress fields σ and σ̂ and no body forces. These solutions occupy the same fluid volume
V bounded by the same surface S with normal n into the fluid. Prove the reciprocal
theorem for Stokes flows i.e.

∫∫

S
û · σ · ndS =

∫∫

S
u · σ̂ · ndS.

(b) A spherical particle of radius a rotates with angular velocity Ω by instanta-
neously imposing a velocity distribution u′ along its spherical boundary (measured in the
particle frame) in an infinite fluid. By applying the reciprocal theorem to the free-rotating
problem (flow u) and to the problem of solid-body rotation at angular velocity Ω̂ (flow û,
for which you are given that σ̂ · n = −3µΩ̂× n on the sphere), show that

Ω = −
3

8πa3

∫

S
n× u′dS (††).

(c) The spherical particle has a prescribed value of u′ along its boundary,

u′ = sin θ

(

∑

n>1

an sinnφ+
∑

n>0

bn cosnφ

)

eφ,

where an and bn are constants, and where the angle φ denotes the azimuthal angle (ranging
from 0 to 2π) and θ the polar angle (ranging from 0 to π) in spherical coordinates.
Determine all components of Ω. Show that is is possible to pick the values of an and
bn so that the particle rotates but creates no flow disturbance.

END OF PAPER
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