MATHEMATICAL TRIPOS Part III

Wednesday, 7 June, 2017 $\,$ 9:00 am to 12:00 pm

PAPER 340

TOPICS IN MATHEMATICS OF INFORMATION

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

.

1

- (a) Give the definition of a multiresolution analysis (MRA) for $L^2(\mathbb{R})$. Define the low pass filter *m* associated with the scaling function φ of this MRA.
- (b) Explain (without proof) how one can construct an orthonormal wavelet from an MRA. Write down a formula for an orthonormal wavelet in terms of the scaling function and the low pass filter of the associated MRA.
- (c) Suppose that the scaling function φ is an element of $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Show that if the associated wavelet ψ has p vanishing moments, then the derivatives of the low pass filter m satisfy

$$m^{(k)}(\pi) = 0, \qquad k = 0, \dots, p-1.$$

State clearly all theorems (without proof) that you use.

(d) Hence deduce that the derivatives of the Fourier transform of φ satisfy for $k = 0, \ldots, p-1$,

$$\hat{\varphi}^{(k)}(2\pi j) = 0, \qquad \forall j \in \mathbb{Z} \setminus \{0\}.$$

(a) Let $\mathcal{B} := \{g_m\}_{m \in \mathbb{N}}$ be an orthonormal basis of a Hilbert space \mathcal{H} . Given $f \in \mathcal{H}$, define its *N*-term linear approximation f_N^{lin} and its *N*-term nonlinear approximation f_N^{nonlin} with respect to \mathcal{B} .

3

(b) For $\alpha > 0$, define what it means for a function, f, to be uniformly Lipschitz- α over [0, 1]. Define the space C^{α} of Hölder- α functions.

In the following, let $\mathcal{H} = L^2([0, 1])$ and let $\{\psi_{j,l}\}_{j,l}$ be an orthonormal basis generated by a Daubechies wavelet which is q times continuously differentiable and has q-vanishing moments, and adapted to the interval [0, 1].

- (c) Given a function $f \in C^{\alpha}$ with $0 < \alpha < q$, show that $|\langle f, \psi_{j,n} \rangle| \leq C 2^{-j(\alpha+1/2)} ||f||_{C^{\alpha}}$ where the constant C > 0 is independent of f.
- (d) Suppose that $f \in L^{\infty}([0,1])$ has K discontinuities and is uniformly Lipschitz- α between these discontinuities, where $1/2 < \alpha < q$. Show that the nonlinear approximation error $\epsilon_n(N, f) := \|f_N^{nonlin} f\|_{L^2([0,1])}^2$ satisfies

$$\epsilon_n(N, f) = \mathcal{O}(N^{-2\alpha}).$$

You may use without proof the fact that there exists a constant C > 0 such that for all $g \in L^{\infty}([0, 1])$,

$$|\langle \psi_{j,n}, g \rangle| \leq C 2^{-j/2} ||g||_{L^{\infty}([0,1])}.$$

 $\mathbf{2}$

- 3
- (a) Let $A \in \mathbb{C}^{m \times N}$ and let $\mathcal{N}(A)$ denote the null space of A. What does it mean for A to satisfy the null space property of order s? Assuming that A satisfies the null space property of order s, show that $\mathcal{N}(A)$ does not contain any 2s-sparse vector other than the zero vector. Hence deduce that given any s-sparse vector, which we denote by x, x is the unique solution to

$$\min_{z \in \mathbb{C}^N} \|z\|_0 \text{ subject to } Ax = Az.$$

Let $y \in \mathbb{C}^m$ and let $q \in (0, 1]$. Consider the minimization problem

$$\min_{z \in \mathbb{C}^N} \|z\|_q \text{ subject to } Az = y.$$
 (Pq)

(b) Show that any s-sparse vector x is the unique minimizer to (P_q) with y = Ax if and only if for all $S \subset \{1, \ldots, N\}$ with $|S| \leq s$,

$$\|v_S\|_q^q < \|v_{S^c}\|_q^q, \qquad \forall v \in \mathcal{N}(A) \setminus \{0\}.$$

In the above, $S^c := \{1, \ldots, N\} \setminus S$. You may use the fact that $(a+b)^q \leq a^q + b^q$ for all $a, b \geq 0$ and $q \in (0, 1)$.

(c) Show that if any s-sparse vector x is the unique minimizer to (P_q) with y = Ax, then any s-sparse vector x is the unique minimizer to (P_p) with y = Ax and $p \in (0, q)$.

- $\mathbf{4}$
 - (a) Let $\Omega = (0,1)^2$ and let $u \in L^1(\Omega)$. State the definition of the total variation of u and define the space $BV(\Omega)$ with the corresponding norm.
 - (b) Give an example of a function which is in $BV(\Omega)$ but not in the Sobolev space $W^{1,1}(\Omega)$. Briefly justify your answer (You may state without proof any properties of Sobolev functions that you use).
 - (c) Let $\alpha > 0$, $\Omega = \mathbb{R}^2$ and let $J : L^2(\Omega) \to [0, \infty]$ be defined by $J(u) = |Du|(\Omega)$, with $J(u) = +\infty$ if $u \notin BV(\Omega)$. Show that u is the minimizer of

$$\min_{v \in L^2(\Omega)} \{ \alpha J(v) + \frac{1}{2} \| v - g \|_{L^2}^2 \}$$
(1)

if and only if

$$\frac{g-u}{\alpha}\in \partial J(u).$$

(d) Let $g(x) = \chi_{B(0,R)}$ be the characteristic function on the ball in \mathbb{R}^2 of radius R, centred at 0. Derive an explicit formula for the minimizer u of (1).

 $\mathbf{5}$

Let $X = \mathbb{R}^{N \times N}$ for some $N \in \mathbb{N}$ and write $X^2 := X \times X$. For $g \in X$, $\lambda > 0$, consider

$$\min_{u \in X} \{\lambda \| \nabla u \|_{2,1} + \frac{1}{2} \| u - g \|_2^2 \}$$

where $||q||_2^2 = \sum_{i,j} q_{i,j}^2$ for $q \in X$, $||p||_{2,1} = \sum_{i,j} \sqrt{(p_{i,j}^1)^2 + (p_{i,j}^2)^2}$ for $p = (p^1, p^2) \in X^2$, and $\nabla : X \to X^2$ is the discrete gradient operator defined by

$$(\nabla u)_{i,j} = \begin{pmatrix} (D_x^+ u)_{i,j} \\ (D_y^+ u)_{i,j} \end{pmatrix},$$

with

$$(D_x^+ u)_{i,j} = \begin{cases} u_{i+1,j} - u_{i,j} & i < N \\ 0 & i = N, \end{cases} \quad (D_y^+ u)_{i,j} = \begin{cases} u_{i,j+1} - u_{i,j} & j < N \\ 0 & j = N \end{cases}$$

This question is about the dual formulation of this minimization problem and the use of the projected gradient descent algorithm.

- (a) Find an expression for the minimizer u as the projection of g onto a closed convex set. Carefully justify every step of your derivation and quote any definitions and theorems that you use.
- (b) Give an iterative algorithm to compute this projection and state under which conditions the iterates converge.
- (c) Briefly describe the convex set associated with the projection when you consider instead for $q \ge 1$, the minimization problem

$$\min_{u \in X} \{\lambda \|Au\|_{q,1} + \frac{1}{2} \|u - g\|_2^2\}$$

where $A: X \to X^d$ for $d \in \mathbb{N}$ is a linear operator and $\|v\|_{q,1} = \sum_{i,j} \left((v_{i,j}^1)^q + \cdots + (v_{i,j}^d)^q \right)^{1/q}$ for $v = (v^1, \cdots, v^d) \in X^d$.

END OF PAPER