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Let Sn be the space of real symmetric n × n matrices. A matrix A ∈ Sn is called
copositive if

xTAx > 0 ∀x ∈ R
n
+

where R
n
+ = {x ∈ R

n : xi > 0 for all i = 1, . . . , n}.

(a) Show that the 2× 2 matrix [ 1 2
2 1 ] is copositive but not positive semidefinite.

(b) Show that if A can be written as A = P +N where P is positive semidefinite and
N is entrywise non-negative (i.e., Nij > 0 for all 1 6 i, j 6 n) then A is copositive.

(c) Let K ⊂ Sn be the set of copositive matrices. Show that K is a closed convex cone.

(d) Recall the definition of pointed cone. Show that K is a pointed cone and that its
interior is not empty.

(e) Recall the definition of dual cone. Show that the dual cone of K is K∗ = C with

C = cl cone
{

xxT : x ∈ R
n
+

}

(1)

where cl denotes closure, and cone denotes the conic hull. You can use the following
version of the separating hyperplane theorem without proof:

Separating hyperplane theorem: If C is a closed convex cone and z /∈ C
then there exists y such that 〈y, z〉 < 0 and 〈y, x〉 > 0 for all x ∈ C.

(f) Show that the closure operation in (1) is not needed, i.e., that cone{xxT : x ∈ R
n
+}

is closed. For this you can use Carathéodory’s theorem without proof:

Carathéodory’s theorem: If S ⊂ R
N then any element of cone(S) is a

conic combination of at most N = dim(RN ) elements of S.

(g) Let Q ∈ Sn and consider the quadratic optimisation problem

minimise
x∈Rn

xTQx subject to
n
∑

i=1

x2i = 1 and xi > 0 ∀i = 1, . . . , n. (2)

Show that (2) has the same optimal value as

maximise
λ∈R

λ subject to Q− λI ∈ K. (3)

where I is the n× n identity matrix.

(h) Write the dual of (3) as a conic program over K∗ = C.
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Let S ∈ R
n×m and consider the following binary quadratic optimisation problem:

maximise pTSq subject to p ∈ {−1, 1}n, q ∈ {−1, 1}m.

(a) Show that this problem has the same optimal value as

maximise xTAx subject to x ∈ {−1, 1}n+m (1)

where

A =
1

2

[

0 S
ST 0

]

. (2)

Let v∗ be the optimal value of (1).

(b) Consider the semidefinite program:

maximise
X∈Sn+m

Tr(AX) subject to X � 0 and Xii = 1, ∀i = 1, . . . , n +m (3)

where Sn+m is the space of real symmetric matrices of size n+m. Let p∗SDP be the
optimal value of (3). Show that p∗SDP > v∗.

The goal of the remaining questions is to show that there is a constant cK ≈ 0.5610
such that cK · p∗SDP 6 v∗. To do so we will use a randomised rounding scheme
similar to the one we saw in lecture for the maximum cut problem.

(c) Show that if a, b ∈ R with a > |b| then the matrix

[

aJn,n bJn,m
bJm,n aJm,m

]

∈ Sn+m is

positive semidefinite where Jp,q is the p × q matrix where all the entries are equal
to one.

(d) Let f, g : [−1, 1] → R be two functions that admit a series expansion

f(x) =
∞
∑

k=0

fkx
k and g(x) =

∞
∑

k=0

gkx
k

and assume that fk > |gk| for all k ∈ N. Let also X be a block matrix

X =

[

X11 X12

XT
12 X22

]

∈ Sn+m where X11 ∈ Sn,X22 ∈ Sm and X12 ∈ R
n×m, and

assume that all the entries of X are in [−1, 1]. Define

Y =

[

f [X11] g[X12]
g[X12]

T f [X22]

]

(4)

where f [X11] is the matrix obtained by applying the function f to each entry of
X11, and similarly for the other blocks. Show that if X is positive semidefinite then
Y is positive semidefinite. To answer this question you can use the Schur product
theorem without proof:

Schur product theorem: If P � 0 and Q � 0 then P ⊙ Q � 0 where
P ⊙Q is the entrywise product of P and Q (i.e., (P ⊙Q)ij = PijQij).
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(e) Let X be an optimal solution of (3). Define Y as in (4) with the following choice of
f and g:

f(x) = sinh(cKπx/2) and g(x) = sin(cKπx/2)

where

cK =
2

π
sinh−1(1) =

2

π
log(1 +

√
2) ≈ 0.5610.

Verify that Y � 0 and Yii = 1 for all i = 1, . . . , n+m [Hint: the series expansion of

sinh and sin are sinh(x) =
∑

∞

k=0
1

(2k+1)!x
2k+1 and sin(x) =

∑

∞

k=0
(−1)k

(2k+1)!x
2k+1].

(f) Let v1, . . . , vn+m ∈ R
r with r = rank(Y ) such that Yij = 〈vi, vj〉 for all i, j =

1, . . . , n+m, and let y be the random variable in {−1, 1}n+m defined by:

yi = sign(〈vi, Z〉)

where Z is a standard Gaussian random vector in R
r. We saw in class that

E[yiyj] =
2

π
arcsin(〈vi, vj〉) ∀1 6 i, j 6 n+m.

Show that

v∗ > E[yTAy] =
2

π
Tr(A arcsin[Y ])

where arcsin[Y ] is the matrix obtained by applying the arcsin function to each entry
of Y .

(g) Recalling the definition of A in (2), the definition of Y in (4) and the fact that
g(x) = sin(cKπx/2), show that Tr(A arcsin[Y ]) = cK

π
2Tr(AX). Conclude that

v∗ > cKTr(AX) = cK · p∗SDP .
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Let T denote the unit circle in the complex plane

T = {z ∈ C : |z| = 1}.

If z = a+ ib ∈ C we denote by z̄ = a− ib the complex conjugate of z and by |z| =
√
a2 + b2

its modulus. A trigonometric polynomial of degree d is a function defined on C \ {0} of
the form:

p(z) =

d
∑

k=−d

pkz
k

where p−d, . . . , pd ∈ C.

(a) Consider the trigonometric polynomial p(z) = z−1 + 2 + z. Show that p(z) > 0 for
all z ∈ T. Show that there exists a polynomial q(z) = q0+ q1z of degree 1 such that
p(z) = |q(z)|2 for all z ∈ T. [Hint: recall that if |z| = 1 then z−1 = z̄].

(b) In the next three questions we will show that any trigonometric polynomial p that
is non-negative on T can be written as p(z) = |q(z)|2 for z ∈ T, for some polynomial
q. Let thus p(z) be a trigonometric polynomial that satisfies p(z) > 0 for all z ∈ T.
We also assume that pd 6= 0.

(i) Prove that p−k = pk for all k = 0, . . . , d using the fact that p(z) ∈ R for all
z ∈ T. Use this to show that for any z ∈ C \ {0}, p(z−1) = p(z).

(ii) Let P (z) = zdp(z) and note that P is a complex polynomial of degree 2d.
Show that if z 6= 0 is a root of P then 1/z̄ is also a root of P .

(iii) Assuming without proof that any root in T of P has even multiplicity we can
factorise P as follows:

P (z) = pd

d
∏

i=1

(z − zi)(z − 1/z̄i) ∀z ∈ C. (1)

Show using (1) that there exists a constant c ∈ C such that

p(z) = c
d
∏

i=1

(z − zi)(z̄ − z̄i) ∀z ∈ T.

Using the fact that p is not identically zero on T show that c > 0. Conclude
that there exists a polynomial q(z) = q0 + q1z + · · · + qdz

d such that
p(z) = |q(z)|2 for all z ∈ T.

(c) A matrix M ∈ C
n×n is called Hermitian if Mij = Mji for all 1 6 i, j 6 n. A

Hermitian matrix is called positive semidefinite if

∑

16i,j6n

Mijxixj > 0 ∀x ∈ C
n.
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(i) Show that if p is a trigonometric polynomial that satisfies p(z) = |q(z)|2 for all
z ∈ T for some polynomial q(z) =

∑d
k=0 qkz

k, then there exists a Hermitian
positive semidefinite matrix M of size d+ 1 such that

∑

06i,j6d
i−j=k

Mi,j = pk ∀k = −d, . . . , d (2)

where the rows and columns of M are indexed by 0, . . . , d.

(ii) Conversely show that if there exists a Hermitian positive semidefinite matrix
M that satisfies (2) then the trigonometric polynomial p(z) =

∑d
k=−d pkz

k is
non-negative on T.

END OF PAPER
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