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Let S™ be the space of real symmetric n X n matrices. A matrix A € S™ is called

copositive if

TAz >0 Vz e R}

where R ={z € R":z; >0foralli=1,...,n}.

Show that the 2 x 2 matrix [} ?] is copositive but not positive semidefinite.

Show that if A can be written as A = P + N where P is positive semidefinite and
N is entrywise non-negative (i.e., N;; > 0 for all 1 <i,j < n) then A is copositive.

Let K C S™ be the set of copositive matrices. Show that K is a closed convex cone.

Recall the definition of pointed cone. Show that K is a pointed cone and that its
interior is not empty.

Recall the definition of dual cone. Show that the dual cone of K is K* = C with
C = cl cone {1‘1‘T cx eRYY (1)

where cl denotes closure, and cone denotes the conic hull. You can use the following
version of the separating hyperplane theorem without proof:

Separating hyperplane theorem: If C'is a closed convex cone and z ¢ C
then there exists y such that (y,z) < 0 and (y,z) >0 for all x € C.

Show that the closure operation in (1) is not needed, i.e., that cone{za? : z € R}
is closed. For this you can use Carathéodory’s theorem without proof:

Carathéodory’s theorem: If S C RN then any element of cone(S) is a
conic combination of at most N = dim(R”) elements of S.

Let @ € S™ and consider the quadratic optimisation problem

n

minimise z7Qz  subject to Zw? =landx; >20Vi=1,...,n. (2)
zeR” P

Show that (2) has the same optimal value as

maf\ci%ise A subject to Q— A € K. (3)
€

where [ is the n x n identity matrix.

Write the dual of (3) as a conic program over K* = C.
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Let S € R™ ™ and consider the following binary quadratic optimisation problem:

maximise plSq subject to pe {—1,1}" ¢ e {—1,1}".

(a) Show that this problem has the same optimal value as

maximise 2! Az subject to z € {—1,1}"t™ (1)
where
110 S
A_Q[ST 0] @)

Let v* be the optimal value of (1).

(b) Consider the semidefinite program:

H)l(axsiniise Tr(AX) subjectto X >=0and X;;=1,Vi=1,...,n4+m  (3)
e n—+m

where S"*™ is the space of real symmetric matrices of size n+m. Let p¥,p be the
optimal value of (3). Show that p§,p > v*.

The goal of the remaining questions is to show that there is a constant cx =~ 0.5610
such that cx - pgpp < v*. To do so we will use a randomised rounding scheme
similar to the one we saw in lecture for the maximum cut problem.

. . . b .

(¢) Show that if a,b € R with a > |b| then the matrix @ bJnm € S"tm s
me,n aJm,m

positive semidefinite where J, , is the p x ¢ matrix where all the entries are equal

to one.

(d) Let f,g:[—1,1] = R be two functions that admit a series expansion

f(z) = Z frz®  and g(x) = ngxk
k=0 k=0

and assume that fr > |gix| for all & € N. Let also X be a block matrix

X = |:X1’1;'L Xl2] € S™™ where X;; € S™, X9 € S™ and X2 € R™™, and
Xip X

assume that all the entries of X are in [—1,1]. Define

| fIXu] g[Xae]
B [Q[Xlz]T f[X22]} )

where f[X11] is the matrix obtained by applying the function f to each entry of
X411, and similarly for the other blocks. Show that if X is positive semidefinite then
Y is positive semidefinite. To answer this question you can use the Schur product
theorem without proof:

Schur product theorem: If P > 0 and Q = 0 then P ® QQ = 0 where
P © Q is the entrywise product of P and @ (i.e., (P ® Q)i; = P;;Qij)-
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Let X be an optimal solution of (3). Define Y as in (4) with the following choice of
f and g:
f(z) =sinh(cgmz/2) and g(x) = sin(cgxmz/2)

where

2 2
cx = —sinh™1(1) = = log(1 + V2) ~ 0.5610.
7T 7T

Verify that Y = 0 and Y;; = 1 for alli =1,...,n+m [Hint: the series expansion of

_1\k
(ék}r)l)!x2k+1]'

sinh and sin are sinh(z) = > 77, mu@%—ﬂ and sin(z) = Y2

Let vi,...,Un4m € R” with r = rank(Y’) such that Y;; = (v;,v;) for all i,j =
1,...,n+m, and let y be the random variable in {—1,1}""" defined by:

yi = sign((vi, Z))
where Z is a standard Gaussian random vector in R". We saw in class that

2
Elyy;] = - arcsin((vs,v;)) V1 <i,j <n+m.

Show that 5
v* > E[yT Ay] = ZTr(Aarcsin[Y])
7r

where arcsin[Y] is the matrix obtained by applying the arcsin function to each entry
of Y.

Recalling the definition of A in (2), the definition of Y in (4) and the fact that
g(x) = sin(cxmx/2), show that Tr(Aarcsin[Y]) = cx 5Tr(AX). Conclude that
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Let T denote the unit circle in the complex plane
T={zeC:|z|=1}.

If 2 = a+ib € C we denote by zZ = a—ib the complex conjugate of z and by |z| = Va2 + b?
its modulus. A trigonometric polynomial of degree d is a function defined on C\ {0} of
the form:

d
p(z) =Y pezt
k=—d

where p_g4,...,pq € C.

(a) Consider the trigonometric polynomial p(z) = 27! 4+ 2 + 2. Show that p(z) > 0 for
all z € T. Show that there exists a polynomial q(z) = gy + ¢12 of degree 1 such that
p(2) = |q(2)|? for all z € T. [Hint: recall that if |z| =1 then 2! = Z].

(b) In the next three questions we will show that any trigonometric polynomial p that
is non-negative on T can be written as p(z) = |q(2)|? for z € T, for some polynomial
q. Let thus p(z) be a trigonometric polynomial that satisfies p(z) > 0 for all z € T.
We also assume that pg # 0.

(i) Prove that p_p = pg for all k£ = 0,...,d using the fact that p(z) € R for all

z € T. Use this to show that for any z € C \ {0}, p(z~1) = p(%).

(i) Let P(z) = 2%(z) and note that P is a complex polynomial of degree 2d.
Show that if z # 0 is a root of P then 1/Z is also a root of P.

(iii) Assuming without proof that any root in T of P has even multiplicity we can
factorise P as follows:

d
P(z) =pa[J(z — z)(z —1/5) VzeC. (1)
i=1
Show using (1) that there exists a constant ¢ € C such that

d

p(z) =c[J(z-z)(z—=) VzeT.

i=1

Using the fact that p is not identically zero on T show that ¢ > 0. Conclude
that there exists a polynomial ¢(z) = ¢y + 1z + --- + gq2z% such that
p(2) = |q(2)|? for all z € T.

(c) A matrix M € C™" is called Hermitian if M;; = Mj; for all 1 < 4,5 < n. A
Hermitian matrix is called positive semidefinite if

Z Mij.fC_i.ij >0 VreC"

1<i,j<n
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(i) Show that if p is a trigonometric polynomial that satisfies p(z) = |q(2)|? for all
z € T for some polynomial ¢(z) = Zz:o qr2*, then there exists a Hermitian
positive semidefinite matrix M of size d + 1 such that

Z Mi7j=pk sz—d,...,d (2)
0<i,j<d
i—j=k
where the rows and columns of M are indexed by 0,...,d.

(ii) Conversely show that if there exists a Hermitian positive semidefinite matrix
M that satisfies (2) then the trigonometric polynomial p(z) = Zz:_dpkzk is
non-negative on T.

END OF PAPER
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