

MATHEMATICAL TRIPOS Part III

Thursday, 8 June, 2017 1:30 pm to 3:30 pm

PAPER 339

TOPICS IN CONVEX OPTIMISATION

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

 $\mathbf{1}$

Let \mathbf{S}^n be the space of real symmetric $n\times n$ matrices. A matrix $A\in\mathbf{S}^n$ is called *copositive* if

 $\mathbf{2}$

$$x^T A x \ge 0 \quad \forall x \in \mathbb{R}^n_+$$

where $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_i \ge 0 \text{ for all } i = 1, \dots, n\}.$

- (a) Show that the 2×2 matrix $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ is copositive but not positive semidefinite.
- (b) Show that if A can be written as A = P + N where P is positive semidefinite and N is entrywise non-negative (i.e., $N_{ij} \ge 0$ for all $1 \le i, j \le n$) then A is copositive.
- (c) Let $K \subset \mathbf{S}^n$ be the set of copositive matrices. Show that K is a closed convex cone.
- (d) Recall the definition of *pointed cone*. Show that K is a pointed cone and that its interior is not empty.
- (e) Recall the definition of *dual cone*. Show that the dual cone of K is $K^* = C$ with

$$C = \operatorname{cl} \operatorname{cone} \left\{ x x^T : x \in \mathbb{R}^n_+ \right\}$$

$$\tag{1}$$

where cl denotes closure, and cone denotes the conic hull. You can use the following version of the separating hyperplane theorem without proof:

Separating hyperplane theorem: If C is a closed convex cone and $z \notin C$ then there exists y such that $\langle y, z \rangle < 0$ and $\langle y, x \rangle \ge 0$ for all $x \in C$.

(f) Show that the closure operation in (1) is not needed, i.e., that $\operatorname{cone}\{xx^T : x \in \mathbb{R}^n_+\}$ is closed. For this you can use Carathéodory's theorem without proof:

Carathéodory's theorem: If $S \subset \mathbb{R}^N$ then any element of $\operatorname{cone}(S)$ is a conic combination of at most $N = \dim(\mathbb{R}^N)$ elements of S.

(g) Let $Q \in \mathbf{S}^n$ and consider the quadratic optimisation problem

$$\underset{x \in \mathbb{R}^n}{\text{minimise}} \quad x^T Q x \quad \text{subject to} \quad \sum_{i=1}^n x_i^2 = 1 \text{ and } x_i \ge 0 \ \forall i = 1, \dots, n.$$
 (2)

Show that (2) has the same optimal value as

$$\underset{\lambda \in \mathbb{R}}{\text{maximise}} \quad \lambda \quad \text{subject to} \quad Q - \lambda I \in K.$$
(3)

where I is the $n \times n$ identity matrix.

(h) Write the dual of (3) as a conic program over $K^* = C$.

 $\mathbf{2}$

Let $S \in \mathbb{R}^{n \times m}$ and consider the following binary quadratic optimisation problem:

maximise
$$p^T S q$$
 subject to $p \in \{-1, 1\}^n, q \in \{-1, 1\}^m$.

(a) Show that this problem has the same optimal value as

maximise
$$x^T A x$$
 subject to $x \in \{-1, 1\}^{n+m}$ (1)

where

$$A = \frac{1}{2} \begin{bmatrix} 0 & S \\ S^T & 0 \end{bmatrix}.$$
 (2)

Let v^* be the optimal value of (1).

(b) Consider the semidefinite program:

$$\underset{X \in \mathbf{S}^{n+m}}{\text{maximise}} \quad \text{Tr}(AX) \quad \text{subject to} \quad X \succeq 0 \text{ and } X_{ii} = 1, \forall i = 1, \dots, n+m$$
(3)

where \mathbf{S}^{n+m} is the space of real symmetric matrices of size n+m. Let p_{SDP}^* be the optimal value of (3). Show that $p_{SDP}^* \ge v^*$.

The goal of the remaining questions is to show that there is a constant $c_K \approx 0.5610$ such that $c_K \cdot p^*_{SDP} \leq v^*$. To do so we will use a randomised rounding scheme similar to the one we saw in lecture for the maximum cut problem.

- (c) Show that if $a, b \in \mathbb{R}$ with $a \ge |b|$ then the matrix $\begin{bmatrix} aJ_{n,n} & bJ_{n,m} \\ bJ_{m,n} & aJ_{m,m} \end{bmatrix} \in \mathbf{S}^{n+m}$ is positive semidefinite where $J_{p,q}$ is the $p \times q$ matrix where all the entries are equal to one.
- (d) Let $f, g: [-1, 1] \to \mathbb{R}$ be two functions that admit a series expansion

$$f(x) = \sum_{k=0}^{\infty} f_k x^k$$
 and $g(x) = \sum_{k=0}^{\infty} g_k x^k$

and assume that $f_k \ge |g_k|$ for all $k \in \mathbb{N}$. Let also X be a block matrix $X = \begin{bmatrix} X_{11} & X_{12} \\ X_{12}^T & X_{22} \end{bmatrix} \in \mathbf{S}^{n+m}$ where $X_{11} \in \mathbf{S}^n, X_{22} \in \mathbf{S}^m$ and $X_{12} \in \mathbb{R}^{n \times m}$, and assume that all the entries of X are in [-1, 1]. Define

$$Y = \begin{bmatrix} f[X_{11}] & g[X_{12}] \\ g[X_{12}]^T & f[X_{22}] \end{bmatrix}$$
(4)

where $f[X_{11}]$ is the matrix obtained by applying the function f to each entry of X_{11} , and similarly for the other blocks. Show that if X is positive semidefinite then Y is positive semidefinite. To answer this question you can use the Schur product theorem without proof:

Schur product theorem: If $P \succeq 0$ and $Q \succeq 0$ then $P \odot Q \succeq 0$ where $P \odot Q$ is the entrywise product of P and Q (i.e., $(P \odot Q)_{ij} = P_{ij}Q_{ij})$.

Part III, Paper 339

[TURN OVER

(e) Let X be an optimal solution of (3). Define Y as in (4) with the following choice of f and g:

 $f(x) = \sinh(c_K \pi x/2)$ and $g(x) = \sin(c_K \pi x/2)$

4

where

$$c_K = \frac{2}{\pi} \sinh^{-1}(1) = \frac{2}{\pi} \log(1 + \sqrt{2}) \approx 0.5610.$$

Verify that $Y \succeq 0$ and $Y_{ii} = 1$ for all $i = 1, \ldots, n + m$ [Hint: the series expansion of sinh and sin are $\sinh(x) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1}$ and $\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$].

(f) Let $v_1, \ldots, v_{n+m} \in \mathbb{R}^r$ with $r = \operatorname{rank}(Y)$ such that $Y_{ij} = \langle v_i, v_j \rangle$ for all $i, j = 1, \ldots, n+m$, and let y be the random variable in $\{-1, 1\}^{n+m}$ defined by:

$$y_i = \operatorname{sign}(\langle v_i, Z \rangle)$$

where Z is a standard Gaussian random vector in \mathbb{R}^r . We saw in class that

$$\mathbb{E}[y_i y_j] = \frac{2}{\pi} \operatorname{arcsin}(\langle v_i, v_j \rangle) \quad \forall 1 \leq i, j \leq n + m$$

Show that

$$v^* \ge \mathbb{E}[y^T A y] = \frac{2}{\pi} \operatorname{Tr}(A \operatorname{arcsin}[Y])$$

where $\arcsin[Y]$ is the matrix obtained by applying the arcsin function to each entry of Y.

(g) Recalling the definition of A in (2), the definition of Y in (4) and the fact that $g(x) = \sin(c_K \pi x/2)$, show that $\operatorname{Tr}(A \operatorname{arcsin}[Y]) = c_K \frac{\pi}{2} \operatorname{Tr}(AX)$. Conclude that

$$v^* \ge c_K \operatorname{Tr}(AX) = c_K \cdot p^*_{SDP}.$$

3

Let \mathbb{T} denote the unit circle in the complex plane

$$\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \}.$$

If $z = a + ib \in \mathbb{C}$ we denote by $\overline{z} = a - ib$ the complex conjugate of z and by $|z| = \sqrt{a^2 + b^2}$ its modulus. A trigonometric polynomial of degree d is a function defined on $\mathbb{C} \setminus \{0\}$ of the form:

$$p(z) = \sum_{k=-d}^{d} p_k z^k$$

where $p_{-d}, \ldots, p_d \in \mathbb{C}$.

- (a) Consider the trigonometric polynomial $p(z) = z^{-1} + 2 + z$. Show that $p(z) \ge 0$ for all $z \in \mathbb{T}$. Show that there exists a polynomial $q(z) = q_0 + q_1 z$ of degree 1 such that $p(z) = |q(z)|^2$ for all $z \in \mathbb{T}$. [*Hint: recall that if* |z| = 1 *then* $z^{-1} = \overline{z}$].
- (b) In the next three questions we will show that any trigonometric polynomial p that is non-negative on \mathbb{T} can be written as $p(z) = |q(z)|^2$ for $z \in \mathbb{T}$, for some polynomial q. Let thus p(z) be a trigonometric polynomial that satisfies $p(z) \ge 0$ for all $z \in \mathbb{T}$. We also assume that $p_d \ne 0$.
 - (i) Prove that $p_{-k} = \overline{p_k}$ for all k = 0, ..., d using the fact that $p(z) \in \mathbb{R}$ for all $z \in \mathbb{T}$. Use this to show that for any $z \in \mathbb{C} \setminus \{0\}$, $p(z^{-1}) = \overline{p(\overline{z})}$.
 - (ii) Let $P(z) = z^d p(z)$ and note that P is a complex polynomial of degree 2d. Show that if $z \neq 0$ is a root of P then $1/\overline{z}$ is also a root of P.
 - (iii) Assuming without proof that any root in $\mathbb T$ of P has even multiplicity we can factorise P as follows:

$$P(z) = p_d \prod_{i=1}^d (z - z_i)(z - 1/\bar{z}_i) \quad \forall z \in \mathbb{C}.$$
 (1)

Show using (1) that there exists a constant $c \in \mathbb{C}$ such that

$$p(z) = c \prod_{i=1}^{d} (z - z_i) (\bar{z} - \bar{z}_i) \quad \forall z \in \mathbb{T}.$$

Using the fact that p is not identically zero on \mathbb{T} show that c > 0. Conclude that there exists a polynomial $q(z) = q_0 + q_1 z + \cdots + q_d z^d$ such that $p(z) = |q(z)|^2$ for all $z \in \mathbb{T}$.

(c) A matrix $M \in \mathbb{C}^{n \times n}$ is called *Hermitian* if $M_{ij} = \overline{M_{ji}}$ for all $1 \leq i, j \leq n$. A Hermitian matrix is called *positive semidefinite* if

$$\sum_{1 \leq i,j \leq n} M_{ij} \overline{x_i} x_j \ge 0 \quad \forall x \in \mathbb{C}^n.$$

Part III, Paper 339

[TURN OVER

(i) Show that if p is a trigonometric polynomial that satisfies $p(z) = |q(z)|^2$ for all $z \in \mathbb{T}$ for some polynomial $q(z) = \sum_{k=0}^{d} q_k z^k$, then there exists a Hermitian positive semidefinite matrix M of size d + 1 such that

$$\sum_{\substack{0 \le i, j \le d \\ i-j=k}} M_{i,j} = p_k \quad \forall k = -d, \dots, d$$
(2)

where the rows and columns of M are indexed by $0, \ldots, d$.

(ii) Conversely show that if there exists a Hermitian positive semidefinite matrix M that satisfies (2) then the trigonometric polynomial $p(z) = \sum_{k=-d}^{d} p_k z^k$ is non-negative on \mathbb{T} .

END OF PAPER