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1

Carbon dioxide (CO2), with density ρc and viscosity µc is injected into the top
of an aquifer with porosity φ and permeability k which is initially saturated in water of
density ρw > ρc and viscosity µw > µc. After an initial transient, the buoyant CO2 forms a
uniform, horizontal interface with the water. Continued injection then causes the interface
to propagates downwards with velocity (u,w) = (0,−W ) where W is a positive constant.
Analyse the stability of the interface and determine the growth rate of instabilities as a
function of their wavenumber α.

Determine the critical speed Wc below which the interface is stable to perturbations
and above which the interface is unstable.

In a reservoir for which the permeability k ≃ 10−12 m2, and for which ρc ≃
700 kg m−3, ρw ≃ 1200 kg m−3, µc ≃ 5 × 10−4 Pa s and µw ≃ 2 × 10−3 Pa s find
the critical velocity Wc (in m/yr).

2

At time t = 0, a large block of ice of uniform temperature T−∞ is brought into
contact with a large body of salt solution of uniform concentration C0 and temperature
T∞ > −mC0, where the liquidus temperature TL(C) = −mC of the salt water is assumed
to be linear. Initially there is a planar interface between between the ice and solution.

Determine or simply write down a similarity solution for the subsequent evolution
of the planar interface such that its displacement into the liquid a(t) = 2λ

√
Dt, where D

is the diffusivity of salt in solution, deriving particularly the system of algebraic equations
that determine λ and the interfacial temperature Ti.

Approximate the equations for the case that λ = O(1) when ǫ2 ≡ D/κ ≪ 1, where
κ is the thermal diffusivity. Define the undercooling θ− ≡ −mC0−T−∞ and the superheat
θ+ ≡ T∞ +mC0, and show that, to leading order in ǫ, the interfacial temperature

Ti =
T∞ + T−∞

2

and that

(i) the salty water solidifies if θ− > θ+;

(ii) there is constitutional supercooling in the salty water if θ− > θ+(1 + 2ǫ).
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A lava lake is filled to a depth H with a lava enriched with a very long-lived
radioactive element, and the radioactive decay thereby provides an approximately constant
internal heating Q (W/kg). The surface is radiatively cooled to a fixed temperature less
than the melting temperature of the lava, Ts < Tm, and thus drives the formation of a
crust of thickness a(t) ≪ H.

Vigorous convection ensures that the lava beneath the crust is well mixed, with
average temperature T (t). Assume that when convection is vigorous and driven primarily
by the radiogenic heating the heat flux from the lava to the crust is approximately

F = λk

(

ρ0gαQ

kκµ

)1/5

(T − Tm),

where λ is a constant, k is the thermal conductivity, κ the thermal diffusivity, α is the
thermal coefficient of expansion, ρ0 a reference density, µ the viscosity of the lava, and g
the acceleration due to gravity.

Derive expressions for the evolution of the crustal thickness a(t) and average
temperature of the lava T (t), including the effects of latent heat release on solidification,
(linear) heat conduction through the crust, convective heat losses from the chamber, and
radiogenic heat production. You may assume radiogenic heating is negligible within the
crust.

Using the thermal diffusion timescale, scale the problem and identify the three key
non-dimensional parameters governing the evolution of the lava lake. The evolution of
the chamber depends critically on the initial temperature of the lava. Find the initial
condition for which the lava temperature remains constant for all time and in this limit
derive an implicit analytical expression for the crustal thickness as a function of time.

For temperatures either greater than or less than this temperature determine the
full evolution of the crustal thickness and temperature at early and intermedia times,
taking care to plot and interpret your results.
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A two-dimensional marine ice sheet of density ρ, dynamic viscosity µ and overall
thickness H(x, t) flows over bedrock that is a depth b(x) = αx below sea level and has
surface elevation h(x, t) above sea level, where x is horizontal displacement and t is time.
It flows into an ocean of density ρw across a grounding line at x = xG(t) to form an ice
shelf, which you may assume is un-buttressed. A negligibly-thin layer of till (a mixture
of clay and pebbles that can be considered here to be a Newtonian fluid) of dynamic
viscosity λµ (λ ≪ 1) and thickness l lubricates the base of the ice sheet. The ice therefore
has negligible internal shear.

Use force and mass balances to derive the governing equations

4µ
∂

∂x

(

H
∂u

∂x

)

− ρgH
∂h

∂x
− λµ

u

l
= 0,

∂h

∂t
+

∂

∂x
(Hu) = 0,

where u(x, t) is the vertically-uniform flow in the ice sheet and g is the acceleration due
to gravity.

What two boundary conditions must be applied at the grounding line x = xG(t)?

How may the equations be simplified in the limit

l

H

H2

L2
≪ λ,

where L ≫ H is a characteristic length scale for variations in the horizontal direction?

Using this simplification from now on, determine the evolution equation for the
grounding line

[

α
ρw
ρ

− ∂H

∂x

]

ẋG =
l

λ

g

ν
H

∂h

∂x

(

∂h

∂x
+ α

)

− 1

8

g′

ν
H2 at x = xG(t),

where g′ = (ρw − ρ)g/ρw is a reduced gravity.

Show that in a steady state with the ice sheet having volume flux q0 per unit width,

g′

8g
H5 = Q

(

Q− αH2
)

,

where

H =
λ

l
H, Q =

λ3

l3
ν

g
q0.

END OF PAPER

Part III, Paper 332


