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(a) Consider an isolated interface (with no surface tension) between semi-infinite layers
of two inviscid fluids of different densities ρ1 < ρ2, moving in the x−direction at two
(different) constant speeds U1 and U2. The displacement η = B exp[ik(x − ct)] (real
part understood, with k > 0 real) of the interface away from its equilibrium position
at z = 0 may be assumed to be sufficiently small and smooth that the problem may
be linearised, and the problem can also be considered to be two-dimensional.

(i) Write down the appropriate conditions on the upper-layer velocity potential φ1
as z → ∞ and on the lower-layer velocity potential φ2 as z → −∞.

(ii) Briefly explain why the appropriate boundary conditions to apply at z = η are
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(iii) Linearise these boundary conditions, and hence show that there is instability for

k >
g(ρ2

2
− ρ2

1
)

ρ1ρ2(U1 − U2)2
.

(b) Now consider an infinite constant density fluid, with two-dimensional background
velocity distribution in the form of a top-hat jet in the x−direction with U = V for
|z| < L and U = 0 for |z| > L. Assume that the perturbation velocity potential
φ′ ∝ exp[ik(x − ct)], and that once again perturbations are sufficiently small and
smooth so that the problem may be linearised.

(i) Determine the appropriate conditions on φ′ at z = ±L.

(ii) Assuming that φ′ is an odd function of z, obtain the dispersion relation:

c2 = −(V − c)2 tanh kL,

and hence deduce that the flow is unstable for all choices of k.

(iii) Obtain the equivalent dispersion relation if φ′ is assumed to be an even function
of z.

(iv) At a fixed wavenumber, compare the growth rates associated with the odd and
even velocity potentials.

(v) At fixed wavenumber, show that the growth rates of perturbations for the top-hat
jet are never larger than the growth rates for perturbations at a single interface
between two fluids of the same density, one of which is stationary and the other
of which is moving at velocity V .
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Consider infinitesimal two-dimensional perturbations about a parallel shear flow in
an inviscid stratified fluid:

u = U(z)x̂ + u′(x, z, t),

p = p(z) + p′(x, z, t),

ρ = ρ(z) + ρ′(x, z, t),
[

u′, p′, ρ′
]

= [û(z), p̂(z), ρ̂(z)] exp[ik(x− ct)],

where the wavenumber k is assumed real, and the phase speed c may in general be
complex. Upon appropriate application of the Boussinesq approximation, the vertical
velocity eigenfunction ŵ satisfies the Taylor-Goldstein equation,

(
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ŵ
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U +
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= 0; N2 = −

g
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dρ

dz
,

where N is the buoyancy frequency and ρ0 is an appropriate reference density.

(a) Show that a necessary condition for instability (i.e. for ci > 0) is that

N2 −
1

4

(

dU

dz

)2

< 0,

somewhere in a flow, with ŵ/[U − c]1/2 zero on the z−boundaries of the flow domain.

(b) Now consider a flow where N2 = J sech2z and U = tanh z for −∞ < z <∞. Assume
that

ŵk(z) = (sechz)k(tanh z)1−k,

for 0 6 k 6 1.

(i) Derive a condition on J such that ŵk(z) is a solution of the Taylor-Goldstein
equation corresponding to a neutral perturbation with c = 0.

(ii) Briefly discuss this result in terms of the ‘Miles-Howard’ theorem proved in part
(a).
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(a) First consider the linear complex Ginzburg-Landau equation:

(

∂

∂t
+ U

∂

∂x

)

ψL − µψL − (1 + icd)
∂2

∂x2
ψL = 0.

Assume that ψL describes an infinitesimal wave-like perturbation, and so is propor-
tional to exp[i(kx− ωt)], where k and ω are in general complex.

(i) Express the dispersion relation in the form

ω = ω0 + (cd − i)(k − k0)
2,

where the absolute frequency ω0 and absolute wavenumber k0 are to be deter-
mined.

(ii) By considering the group velocity when k = k0, identify criteria on the absolute
frequency for the flow to be convectively or absolutely unstable.

(b) Now consider the nonlinear Ginzburg-Landau equation with µ > k2 and no dispersion:

(

∂

∂t
+ U

∂

∂x

)

ψ = µψ +
∂2

∂x2
ψ − |ψ|2ψ.

(i) Show that ψS = Q exp[ik(x−Ut)] is a solution of the nonlinear Ginzburg-Landau
equation, where Q > 0 is a constant to be determined.

(ii) Now determine the non-trivial time-dependent function R(t) with initial value
R(0) = R0 > 0, R0 6= Q, such that ψR = R(t) exp[ik(x−Ut)] is a solution of the
nonlinear Ginzburg-Landau equation.

(iii) Hence show for all choices of R0 6= Q that ψR → ψS monotonically as t→ ∞.

(iv) If R≪ Q, show that ψR has approximately the same exponential growth rate as
the solutions ψL of the linear complex Ginzburg-Landau equation considered in
(a), with cd = 0 and µ > k2.
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Consider plane Poiseuille flow of a zero-mean dynamic scalar field θ(x, t) in a channel
−1 6 y 6 1 with base steady flow u = (1−y2)x̂ and base scalar distribution θ = −erf(30y).
For finite Péclet number Pe, Reynolds number Re and bulk Richardson number RiB , the
evolution equations are:

∂tu+U ·∇u+ u ·∇u+RiBθŷ+∇p−Re−1
∇

2u = 0,

∇ · u = 0, ∂tθ +U ·∇Θ− Pe−1∇2Θ = 0,

where here the total velocity field is U = u + u, and the total scalar field is Θ = θ + θ.
Impose

u(x,±1, z, t) = 0; ∂yp(x,±1, z, t) = ∂yΘ(x,±1, z, t) = θ(x, 0) = 0,

and periodicity at ±Lx and ±Lz. Consider the augmented Lagrangian:

L =
(

Θ(x, T ),Θ(x, T )
)

−
〈

u†, ∂tu+U ·∇u+ u ·∇u+RiBθŷ+∇p−Re−1∇2u
〉

−
〈

p†,∇ · u
〉

−
〈

θ†, ∂tθ +U ·∇Θ− Pe−1∇2Θ
〉

−
(

u†
0
,u(x, 0) − u0

)

,

where u†, p†, θ† and u†
0
are appropriate Lagrange multipliers, u0 is a specified velocity

initial condition, T is the target time, and the scalar products (·, ·) and 〈·, ·〉 are defined
as

〈

a(x, t),b(x, t)
〉

=

∫ T

0

(

a(x, t),b(x, t)
)

dt =

∫ T

0

∫ Lz

−Lz

∫

1

−1

∫ Lx

−Lx

a(x, t) · b(x, t) dxdydzdt.

(a) Derive the adjoint equations to identify an optimal initial perturbation to the velocity
field with a fixed kinetic energy E0 to minimise scalar variance at terminal time t = T .

(b) Identify the appropriate initial t = 0 and terminal t = T conditions for the adjoint
variables for such a locally optimal initial velocity perturbation.
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