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(a) A force-free couple-free spherical micro-organism of radius a can swim through
fluid of the same density by using a surface layer of tiny flagella to prescribe a tangential
relative velocity us(x) between the fluid just outside the organism and the rigid body of
the organism. Hence if the velocity of the organism is U+Ω∧x, with U and Ω constants,
then the fluid velocity immediately outside the organism is U+Ω ∧ x+ us(x).

The organism is swimming through unbounded fluid, which is otherwise at rest, and
prescribing us(x) = (I − nn)·(A + B·n), where A is a constant vector, B is a constant
symmetric traceless second-rank tensor and n(x) = x/a is the outward normal to the
organism. Explain, without calculation, why U is just a multiple of A. What is the value
of Ω, and why?

State the Papkovich–Neuber representation for the velocity and pressure in Stokes
flow. Use this representation, explaining your choice of trial harmonic potentials, to
determine the velocity field u(x) outside the organism and hence obtain the value of
the swimming velocity U.

(b) The organism is now swimming with the same us in the presence of a rigid sphere
of radius a that is held stationary at x = X. Assuming that a ≪ R, where R = |X|, find
the leading-order approximations to the force and the couple that must be applied to the
rigid sphere to keep it stationary. State the order of the next correction to the force, and
state where it comes from.

Find the leading-order correction to the swimming velocity of the organism due to
the presence of the stationary sphere, and state the order of the next correction.

Write down the velocity field due to a Stokeslet of strength F, and show that the
corresponding vorticity is F∧x/4πµr3. Deduce that the organism does not rotate with an
O(a3B/R4) angular velocity, but with a smaller angular velocity, given at leading order
by

Ω =
A ∧Xa4

4R6
.

[You may assume the Faxén formulae

U =
F

6πµa
+ u∞ +

a2

6
∇2u∞ , Ω =

G

8πµa3
+

1

2
ω∞ ,

but should explain how you apply them.]
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(a) An axisymmetric thread of viscous fluid falls steadily and vertically from a nozzle
through air of negligible viscosity and constant pressure pe. The thread has radius a(z),
where |∂a/∂z| ≪ 1. Surface tension acts on the interface, but inertia is negligible. Derive
the equations governing a and the vertical velocity w, explaining your argument carefully.
[Hint: interfacial tension γ per unit length should be included in the vertical force balance.]

For the case of steady flow with constant flux πa2
0
w0 from a nozzle of radius a0,

show that

3
d

dZ

(

1

W

dW

dZ

)

+
1

W
+ Γ

dW−1/2

dZ
= 0 , W (0) = 1 ,

where the dimensionless variables W , Z and Γ should be defined. Verify that there is a
solution of the form W = (kZ + 1)α, where α and k(Γ) are to be found. Does surface
tension increase or decrease the rate of fall? Explain this effect physically.

(b) A long annular cylinder of viscous fluid, Ri(t) 6 r 6 Re(t), undergoes uniform
axial extension with velocity w(z) = Ez, where E is a constant. Surface tension acts on
both interfaces, gravity and inertia are negligible, and the pressures, pi and pe, internal
and external to the annulus are held constant. (The air inside the annulus is assumed to
escape along the axis with a negligible pressure gradient.)

Determine the radial velocity u(r, t) and show that the pressure p = p(t) is given by

(−p− µE)(R2

e −R2

i ) = −R2

epe +R2

i pi − γ(Re +Ri) .

Use the kinematic boundary conditions to show that

d

dt
(Re −Ri) = −

E

2
(Re −Ri) +

γ

2µ
−

(pi − pe)RiRe

2µ(Ri +Re)
,

and to find an evolution equation for A = R2
e −R2

i .

For the case pi = pe, E = 0 and Re(0) = 2Ri(0), find the time when Ri(t) = 0.

(c) A hollow axisymmetric thread of viscous fluid, Ri(z) 6 r 6 Re(z), falls steadily
and vertically under gravity from an annular nozzle. The internal and external pressures
are held constant. Adapt your previous analyses where necessary to show that

3µ
∂

∂z

(

A
∂w

∂z

)

+ ρgA+ γ
∂(Re +Ri)

∂z
= 0 .

For the case pi = pe, use the kinematic equations to show further that the central hole
closes at the height z∗ where

γ

2µw
1/2
0

∫ z∗

0

dζ

w(ζ)1/2
= A(0)1/2 −Re(0) +Ri(0) .

Without attempting a detailed calculation, use part (a) to explain briefly why you would
expect z∗ to be finite.
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A thin film of viscous fluid flows with a typical velocity U between two rigid surfaces
with a typical gap width H that varies on a lengthscale L ≫ H. Use scaling arguments to
show that the typical shear stress τ and the typical pressure variations P satisfy τ/P ≪ 1.

The annular gap between two nearly concentric, horizontal, rigid cylinders of radius
a and a +∆, with 0 < ∆ ≪ a, is filled with fluid of viscosity µ. The cylinders are offset
vertically, with axes at (x, z) = (0, 0) and (0, α∆) respectively, where −1 < α < 1. Show
that the gap thickness h(θ) between the cylinders is approximately given by

h = (1 + α sin θ)∆,

where θ is the angle to the x-axis. [The effects of inertia and gravity are negligible.]

(a) The inner cylinder rotates with angular velocity Ω about its own axis, and the
outer cylinder is stationary. Use lubrication theory to determine the flux q (per unit axial
length) in the annular gap.

Express the local pressure gradient, and the local shear stresses on the inner and
outer cylinders, in terms of q, Ω, a, h and µ.

Calculate the leading-order contribution to the horizontal force Fx (per unit length)
required to hold the axis of the inner cylinder stationary, showing that

Fx = −
6πµΩa3

∆2

α

(1− α2)1/2(1 + 1

2
α2)

.

[Hint: Integrate by parts to avoid finding p(θ).] Explain, without calculation, why the
vertical force required is zero.

Calculate the couple on each cylinder about its own axis. Why do these couples not
add to zero? How does the difference relate to Fx?

(b) Now the outer cylinder moves upwards with speed V = (dα/dt)∆, and the inner
cylinder is stationary. Calculate the vertical force Fz (per unit length) required to hold
the inner cylinder stationary.

(c) Model a lubricated axle bearing by modifying your calculations as follows. The
inner cylinder is now able to move both horizontally and vertically, and rotates with
angular velocity Ω. The outer cylinder is stationary. A external vertical load −F (per
unit length) is applied to the inner cylinder, but there is no applied horizontal load.

If the cylinders are initially concentric, what is the initial velocity of the inner
cylinder? Briefly describe what happens next. Describe the equilibrium position of the
inner cylinder?
[

You may assume that if In =

∫

2π

0

dθ

(1 +A sin θ)n
then I1 =

2π

(1−A2)1/2
,

I2 =
2π

(1−A2)3/2
, I3 =

2π(1 + 1

2
A2)

(1−A2)5/2
. Also

∫

2π

0

(1− sin2 θ) dθ

(1 +A sin θ)3
=

π

(1−A2)3/2
.

]
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