MATHEMATICAL TRIPOS Part III

Monday, 12 June, 2017 1:30 pm to 3:30 pm

PAPER 328

BOUNDARY VALUE PROBLEMS FOR LINEAR PDES

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let q(x,t) satisfy the Stokes equation

$$q_t + q_x + q_{xxx} = 0, \quad 0 < x < +\infty, \quad 0 < t < T,$$
(1)

and the initial and boundary conditions

$$q(x,0) = q_0(x), \quad 0 < x < +\infty,$$
(2)

$$q_x(0,t) = g_1(t), \quad 0 < t < T,$$
(3)

where $0 < T < +\infty$, the given functions q_0 and g_1 have sufficient smoothness, q_0 has sufficient decay as $x \to +\infty$, and $\dot{q}_0(0) = g_1(0)$.

 $\mathbf{2}$

Find an integral representation for the solution q(x, t) in terms of $q_0(x)$ and $g_1(t)$.

2 Let q(x,t) satisfy the initial-boundary value problem

$$q_t = q_{xx} + \beta q_x, \quad 0 < x < L, \ 0 < t < T, \tag{1}$$

$$q(x,0) = q_0(x), \quad 0 < x < L,$$
(2)

$$q_x(0,t) = g_1(t), \quad 0 < t < T,$$
(3)

$$q_x(L,t) = h_1(t), \quad 0 < t < T,$$
(4)

where L, T, and β are given positive constants, the given functions q_0 , g_1 , and h_1 have sufficient smoothness, $\dot{q}_0(0) = g_1(0)$, and $\dot{q}_0(L) = h_1(0)$.

Obtain an integral representation for the solution q(x,t) in terms of $q_0(x)$, $g_1(t)$, and $h_1(t)$.

UNIVERSITY OF

3

Let q(x, y) satisfy the Laplace equation

$$q_{xx} + q_{yy} = 0, \quad 0 < x + \infty, \quad 0 < y < +\infty,$$
 (1)

and the initial and boundary conditions

$$q(0,y) = g_1(y), \quad 0 < y < +\infty,$$
(2)

$$q(x,0) = g_2(x), \quad 0 < x < +\infty,$$
(3)

where the given functions g_1 and g_2 have sufficient smoothness, $g_1(y)$ has sufficient decay as $y \to +\infty$, $g_2(x)$ has sufficient decay as $x \to +\infty$, and $g_1(0) = g_2(0)$.

3

Find an integral representation for the derivative q_z , z = x + iy, in terms of $g_1(y)$ and $g_2(x)$.

END OF PAPER