MATHEMATICAL TRIPOS Part III

Friday, 9 June, 2017 1:30 pm to 3:30 pm

PAPER 327

DISTRIBUTION THEORY AND APPLICATIONS

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

2

1 State and prove the Paley-Wiener-Schwartz theorem.

Let P be a non-zero polynomial of one variable with no repeated roots and define $\mathcal{N} = \{\varphi \in \mathcal{E}(\mathbf{R}) : P(-D)\varphi = 0\}$. Prove that the equation

$$P(D)u = v \in \mathcal{E}'(\mathbf{R})$$

has a solution $u \in \mathcal{E}'(\mathbf{R})$ if and only if $\langle v, \varphi \rangle = 0$ for all $\varphi \in \mathcal{N}$.

 $\mathbf{2}$

Define the space of Schwartz functions $\mathcal{S}(\mathbf{R}^n)$ and the space of tempered distributions $\mathcal{S}'(\mathbf{R}^n)$, specifying the notion of convergence in each.

Show that the Fourier transform defines a continuous isomorphism on $\mathcal{S}(\mathbf{R}^n)$, and that this extends to a continuous isomorphism on $\mathcal{S}'(\mathbf{R}^n)$.

For the remainder of this question assume n > 1. Let $R \in SO(n)$ be a rotation matrix. For $T \in \mathcal{S}'(\mathbf{R}^n)$ define $T \circ R \in \mathcal{S}'(\mathbf{R}^n)$ by

$$\langle T \circ R, \varphi \rangle = \langle T, \varphi \circ R^t \rangle, \quad \varphi \in \mathcal{S}(\mathbf{R}^n).$$

T is said to be radial if $T \circ R = T$ for all $R \in SO(n)$. Show that:

- (i) $T \in \mathcal{S}'(\mathbf{R}^n)$ is radial if and only if \hat{T} is radial.
- (ii) If $\psi \in \mathcal{S}(\mathbf{R}^n)$ and $T \in \mathcal{S}'(\mathbf{R}^n)$ are both radial, so are ψT and $T * \psi$.

Hence, or otherwise, show that a radial tempered distribution can be written as the limit of a sequence of radial Schwartz functions.

3

State and prove the Malgrange-Ehrenpries theorem for P(D), where P is a nonzero polynomial in n variables. Your proof should involve the construction of a suitable "Hörmander staircase".

Show that P(D)u = f admits a smooth solution for every $f \in \mathcal{D}(\mathbb{R}^n)$. Deduce that all solutions to $P(D)u = f \in \mathcal{D}(\mathbb{R}^n)$ are smooth if and only if all solutions to P(D)v = 0 are smooth.

END OF PAPER