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1 State and prove the Paley-Wiener-Schwartz theorem.

Let P be a non-zero polynomial of one variable with no repeated roots and define
N = {ϕ ∈ E(R) : P (−D)ϕ = 0}. Prove that the equation

P (D)u = v ∈ E ′(R)

has a solution u ∈ E ′(R) if and only if 〈v, ϕ〉 = 0 for all ϕ ∈ N .

2

Define the space of Schwartz functions S(Rn) and the space of tempered distribu-
tions S ′(Rn), specifying the notion of convergence in each.

Show that the Fourier transform defines a continuous isomorphism on S(Rn), and
that this extends to a continuous isomorphism on S ′(Rn).

For the remainder of this question assume n > 1. Let R ∈ SO(n) be a rotation
matrix. For T ∈ S ′(Rn) define T ◦R ∈ S ′(Rn) by

〈T ◦R,ϕ〉 =
〈

T, ϕ ◦Rt
〉

, ϕ ∈ S(Rn).

T is said to be radial if T ◦R = T for all R ∈ SO(n). Show that:

(i) T ∈ S ′(Rn) is radial if and only if T̂ is radial.

(ii) If ψ ∈ S(Rn) and T ∈ S ′(Rn) are both radial, so are ψT and T ∗ ψ.

Hence, or otherwise, show that a radial tempered distribution can be written as the limit
of a sequence of radial Schwartz functions.

3

State and prove the Malgrange-Ehrenpries theorem for P (D), where P is a non-
zero polynomial in n variables. Your proof should involve the construction of a suitable
“Hörmander staircase”.

Show that P (D)u = f admits a smooth solution for every f ∈ D(Rn). Deduce that
all solutions to P (D)u = f ∈ D(Rn) are smooth if and only if all solutions to P (D)v = 0
are smooth.
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