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1 Linear inverse problems
This question deals with linear inverse problems, generalised solutions, the Moore–

Penrose inverse and the singular value decomposition of compact operators.

1. (a) Write down the definitions of a forward problem and the associated inverse
problem. When is an inverse problem ill-posed?

(b) Write down the definition of least squares solution andminimal norm solution.
Under what conditions do least squares solutions exist? Give an example
where least squares solutions do not exist.

2. (a) Write down the definition of the Moore–Penrose inverse and state its con-
nection to least squares solutions and the minimal norm solution. State an
equivalent condition to the continuity of the Moore–Penrose inverse.

(b) Consider the linear operator K : ℓ2 → ℓ2, defined by

(Ku)j := uj/j .

Show that K is continuous and calculate its range, null space and Moore–
Penrose inverse K†. It is necessary to also state the domain of K†. Is K†

continuous?

3. Let U ,V be Hilbert spaces and consider a linear and compact operator K ∈ K(U ,V).

(a) Write down the definition of the singular value decomposition (SVD) of K
and the SVD of the operator in 2b.

(b) What is an equivalent condition to f ∈ R(K)? Use this condition to verify
for which p > 0 the data f with fj = j−p is in the range of K as defined in
2b.

(c) Consider now the special case U = L2([0, 1]),V = L2([0, 1]) with the integral
operator K : L2([0, 1]) → L2([0, 1]) defined as

(Ku)(y) :=

∫ y

0
u(x) dx .

Let f be given by f(x) :=

{

0 x < 1
2

1 x > 1
2

. Show that f ∈ R(K) \ R(K). Is the

Moore–Penrose inverse of K continuous? Hint: You can use without proof
that the SVD of K is given by {uj , vj , σj}j∈N with

uj(x) =
√
2 cos(σ−1

j x), vj(x) =
√
2 sin(σ−1

j x), and σj =
2

(2j − 1)π
.
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2 Regularisation
This question deals with various aspects of the concept of regularisation.

1. Write down the definitions of regularisation, linear regularisation, parameter choice
rule and convergent regularisation. Give an example for a regularisation.

2. State the decomposition of the total error of the regularised solution with the
minimal norm solution. Sketch the qualitative behaviour of the errors.

3. Consider the problem of differentiation with the integral operator K : L2([0, 1]) →
L2([0, 1]) defined as (Ku)(y) :=

∫ y
0 u(x) dx. Approximate K† with the one-sided

differential quotient operator Dh : L2([0, 1]) → L2([0, 1]) with

(Dhf)(x) :=
1

h

{

[f(x+ h)− f(x)] x ∈ [0, 12)

[f(x)− f(x− h)] x ∈ [12 , 1]
,

for h ∈ (0, 1/2). We consider exact data f ∈ C2([0, 1]) and noisy measurements
f δ ∈ L2([0, 1]) for which ‖f − f δ‖L2 6 δ holds true.

(a) Verify the following estimate for the error between K†f = f ′ and Dhf
δ:

‖K†f −Dhf
δ‖L2 6

√
6δ

h
+

‖f ′′‖∞
2

h (1)

(b) Determine h(δ) that minimises the right-hand-side of (1). Find a parameter
choice rule such that Dh is a convergent regularisation.

4. Let U ,V,W be Hilbert spaces, K ∈ L(U ,V) be an injective, linear and bounded
operator and B ∈ L(U ,W) be a linear and bounded operator with ‖Bu‖ > β‖u‖.
Furthermore, let f ∈ D(K†) and f δ ∈ V with ‖f − f δ‖ 6 δ. Then we define
Tikhonov–Philipps regularisation as

Rαf
δ = (K∗K + αB∗B)−1K∗f δ .

(a) Let r, α > 0. Verify the following estimate

‖Rαf−K†f‖ 6 ηr+α1/2βr, ηr := inf
{

‖β−2B∗BK†f −K∗w‖
∣

∣

∣
w ∈ V, ‖w‖ 6 r

}

and show that limr→∞ ηr = 0. Hint: Begin by estimating ‖KRαf −KK†f‖2.

(b) Use the result of 4a to show that Tikhonov–Philipps regularisation is a
convergent regularisation with an appropriate parameter choice rule.
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3 Variational regularisation
This question deals with basic concepts of convex analysis and variational regulari-

sation methods.

1. Write down the definition of the convex conjugate E∗ for a proper, lower semi-
continuous and convex functional E.

2. Compute the convex conjugates of the following functions or functionals:

(a) E : R → R, E(x) := |x|.

(b) E : R → R∞, E(x) := χ[−1,1](x)+
1
2 |x|2, with χ[−1,1](x) :=

{

0 if |x| 6 1

∞ else
.

3. In a finite dimensional space, boundedness of a sequence implies that the sequence
has a strongly convergent subsequence. What is the analogue for an infinite-
dimensional Hilbert space? State similar statements for reflexive and non-reflexive
Banach spaces.

4. Write down the definition of the proximal operator proxE for a convex functional
E.

5. Compute a simple formula for the solution of the proximal operator for the convex
functional E : X → R∞, E(x) := αJ(cx − y) + 〈x, z〉, for α > 0, c ∈ R, y ∈ X ,
z ∈ X ∗, X being a Banach space and J : X → R∞ being a proper, lower semi-
continuous and convex functional.

6. Verify

p ∈ ∂J(u) ⇔ u ∈ ∂J∗(p)

for a proper, lower semi-continuous and convex functional J : U → R∞ and its
convex conjugate J∗ : U∗ → R∞, for U being a Hilbert space.
Hint: Prove the equivalence p ∈ ∂J(u) ⇔ J(u) + J∗(p) = 〈u, p〉 first. You may
exploit the fact that under the stated assumptions J = J∗∗ holds true.

7. Prove Moreau’s identity, respectively Moreau’s decomposition, which states

u = proxJ(u) + proxJ∗(u) ,

for all u ∈ U and J : U → R∞ as defined in Exercise 6.
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4 Bregman distances
This question deals with numerous aspects of generalised Bregman distances.

1. Write down the definitions of the subdifferential for convex functionals and the
Bregman distance as well as the symmetric Bregman distance.

2. Let U be a Banach space and V be a Hilbert space. Verify the error estimate

Dsymm
J (uα, u

†) 6
δ2

2α
+

α‖w‖2V
2

,

for α > 0, J : U → R∞ being a proper, lower semi-continuous and convex functional,
and uα defined as

uα := argmin
u∈U

{

1

2
‖Ku− f δ‖2V + αJ(u)

}

, (1)

and f := Ku† with ‖f − f δ‖V 6 δ for some u† that satisfies the source condition
K∗w ∈ ∂J(u†). Hint: Exploit the optimality conditions of (1) to prove this –
compared to the lecture – stronger estimate.

3. Prove that the weighted one-norm J : ℓ2 → R∞ with

J(u) :=

{

∑∞
k=1wk|uk| u ∈ ℓ1

∞ u ∈ ℓ2 \ ℓ1
(2)

and weights that satisfy 0 < c 6 wk < ∞, for all k ∈ N, is lower semi-continuous,
and compute the corresponding Bregman distance.

4. Show that for β > 0 the elastic net, i.e. Rαf
δ := argminu∈ℓ2

{

1
2‖Ku− f δ‖2ℓ2 + αJ(u)

}

with

J(u) :=

{

‖u‖ℓ1 + β‖u‖2ℓ2 u ∈ ℓ1

∞ u ∈ ℓ2 \ ℓ1
, (3)

for α > 0 and f δ ∈ ℓ2, is a convergent regularisation (in the norm sense for Hilbert
spaces) and specify a suitable parameter choice rule. Further show that Rα is a
non-linear operator.

5. Assume that uλ is a generalised singular vector, i.e. we have ‖Kuλ‖V = 1,
λK∗Kuλ ∈ ∂J(uλ) and λ = J(uλ), for a linear operator K : U → V, mapping
between a Banach space U and a Hilbert space V, and a proper, convex, lower
semi-continuous and absolutely one-homogeneous functional J : U → R∞. Further
assume that we have data f = γKuλ for γ > 0. Show that for fixed α > 0 the
iterates of the Bregman iteration, i.e. for k = 1, 2, . . .

uk+1
α ∈ argmin

u∈U

{

1

2
‖Ku− f‖2V + αD

pkα
J (u, ukα)

}

pk+1
α = pkα +

1

α
K∗(f −Kuk+1

α )

, (4)

with u0α = p0α = 0 and pkα ∈ ∂J(ukα) for all k ∈ N, converge to uk∗α = γuλ after a
finite number of iterations k∗.
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