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Throughout this question, for any integer N let ZN denote the set
of integers modulo N . Let HN denote an N dimensional state space with
standard orthonormal basis B = {| 0〉 , . . . , |N − 1〉}. You may assume that
measurements relative to the basis B and the quantum Fourier transform
mod N may both be implemented in poly(logN) time. You may also assume
that the number of integers less than N that are coprime to N grows as
O(N/ log logN) and that x ∈ ZN has a multiplicative inverse mod N iff x
and N are coprime.

(a) Let f : ZN → ZN be a periodic function which is one-to-one within
each period and which can be computed by a poly(logN) sized circuit.
Explain how the period r of f can be determined in poly(logN) time by a
quantum computation which succeeds with probability O(1/ log logN), and
after which we also learn if the computation has been successful or not.

(b) For any prime p consider the set Z
∗
p = {1, 2, . . . , p − 1} ⊂ Zp of

nonzero integers modulo p, with the operation of multiplication mod p. A
generator for Z

∗
p is an element g whose powers generate all of Z∗

p i.e. for
all x ∈ Z

∗
p there is y ∈ Zp−1 with x = gy mod p. y is called the discrete

logarithm of x (to base g). You may assume that Z∗
p always has a generator

g and that it satisfies gp−1 ≡ 1 mod p.

Suppose we are given a generator g and element x ∈ Zp, and we wish
to compute its discrete logarithm y.

(i) Consider the function f : Zp−1 × Zp−1 → Z
∗
p given by

f(a, b) = gax−b mod p.

For each fixed c ∈ Z
∗
p, show that there is a corresponding fixed k ∈ Zp−1

such that
f(a, b) = c iff a = by + k mod p− 1.

(ii) Suppose we have constructed the state

|φ〉 = 1

(p− 1)

∑

a,b∈Zp−1

| a〉 | b〉 | f(a, b)〉

(in Hp−1⊗Hp−1⊗Hp) and we measure the third register obtaining a result
c0. Find the post-measurement state of the first two registers.

(iii) If we then apply the quantum Fourier transform mod (p − 1) to
each of these two registers and measure both registers, which output pairs
(c1, c2) ∈ Zp−1×Zp−1 can be obtained with non-zero probability? Can y be
determined from any such pair? Give a reason for your answer.
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(a) Let Bn denote the set of all n-bit strings and write N = 2n. Let
f : Bn → B1 be a function taking value 1 exactly k times, with f(x) = 1 iff
x ∈ G = {x1, . . . , xk}. The Grover operator is defined by Q = −HnI0HnIG
where Hn = H ⊗ . . . ⊗H is the Hadamard operation on each of n qubits,
and for all x ∈ Bn, I0 and IG are defined by

I0 |x〉 =
{

− |x〉 if x = 0 . . . 0
|x〉 if x 6= 0 . . . 0

IG |x〉 =
{

− | x〉 if x ∈ G
| x〉 if x /∈ G.

Write |ψ0〉 = 1√
N

∑

x∈Bn
|x〉. Derive a geometrical interpretation of the

action of Q in a suitable part of the space of n qubits, which should be
clearly defined. Using this interpretation, show that if IG is given as a black
box then an x in G may be obtained with high probability (better than a
half say) with O(

√

N/k) uses of IG, if N is large and k is small compared
to N .

(b) Let g : Bn → Bn be a 2-to-1 function i.e. for every y in the range
of g there are precisely two strings x ∈ Bn with g(x) = y. A collision is
a pair of strings x1, x2 ∈ Bn with g(x1) = g(x2). The standard quantum
oracle Ug for g is the unitary operation on 2n qubits defined by

Ug |x〉 | y〉 = | x〉 | y ⊕ g(x)〉 x, y ∈ Bn

where ⊕ denotes bitwise addition of n-bit strings.

Suppose that we are given Ug as a black box operation. Using the
result of (a), or otherwise, show that a collision may be found with high
probability (better than a half say) with O(N1/3) uses of Ug.
[Hint: start by partitioning the domain of g into sets A and B of sizes N1/3

and (N −N1/3) and listing all the values of g(x) for x ∈ A. We might find
a collision there, but if we’re not so lucky, what should we do next with B?]
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(a) Let φ be a real number satisfying φ = c/2n for some known integer
n and unknown integer c with 0 6 c < 2n. Let U be a unitary operator, and
let |ψ〉 be a quantum state such that U |ψ〉 = e2πiφ |ψ〉.

Describe a quantum algorithm which, given access to a controlled-
U operation and the ability to produce |ψ〉, outputs φ exactly. Give an
explanation of the correctness of your algorithm and include a quantum
circuit for it. (You may treat the inverse quantum Fourier transform
(QFT−1) as a black box in your circuit, i.e. you need not give a circuit
for QFT−1).

(b) Let A be an n-qubit Hermitian operator with all eigenvalues λi
distinct and each having the form λi = ci/2

n for an integer 0 6 ci < 2n.
Suppose further that we are able to implement the unitary U = e2πiA and
its controlled version controlled-U .

We are given an n-qubit state | b〉 (as a quantum physical state, with
its actual identity possibly unknown) and we wish to produce the state
|ψ〉 given by the vector A | b〉 normalised, with some non-zero probability.
We have available a universal set of gates and in particular we are able to
implement controlled rotations of the form

| c〉 | 0〉 −→ | c〉 (cos θc | 0〉+ sin θc | 1〉)

where 0 6 c < 2n is an integer and sin θc = c/2n. Here the first and second
registers are an n-qubit and one-qubit register respectively.

(i) Let | uj〉 be a normalised eigenvector of A belonging to λj, and let
| b〉 = ∑

βj |uj〉. Show how we can construct the state

∑

βj

√

1− λ2j | uj〉 | cj〉 | 0〉+ βjλj |uj〉 | cj〉 | 1〉

from | b〉. Here the first two registers are each n-qubit registers and the third
is a one-qubit register.

(ii) Hence (or otherwise) show how the state |ψ〉 may be obtained
with probability of success exceeding the square of the smallest eigenvalue
of A.
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Please see the next page for a list of notations used in this question

and facts that may be used without proof.

(a) (i) State how the operation J(α) may be applied to a qubit in
any state |ψ〉 by using only the operation E and a suitable single qubit
measurement (and any ancillary qubits in suitable fixed states as needed).
You need not prove the validity of your claimed process.

(ii) Consider the graph state |ψ2×2〉 corresponding to the graph

Using the formula given below for the action of E (or otherwise) show that
if one of the qubits is measured in the computational basis with result r,
the remaining qubits will be left in the state (Zr ⊗ I ⊗ Zr) |ψ3〉, where |ψ3〉
is the graph state corresponding to the graph

(iii) Next, the first qubit of the state (Zr ⊗ I ⊗ Zr) |ψ3〉 is measured
in the basis {|α+〉 , |α−〉}, and result s is obtained. (Here s = 0 respectively
1 corresponds to the first, respectively second, vector in the measurement
basis). Show that the remaining qubits (now labelled 2 and 3) are left in
the state

E23X
(r+s)
2 J (α)2 Z

r
3 |+〉2 |+〉3 .

(iv) Using your previous answers, explain how you could simulate the
results of the circuit

|+〉 J(α) •
NM






 → k

|+〉 •
NM






 → l

using single-qubit measurements on |ψ2×2〉 and classical processing of the
results. (In the above diagram the final boxes on the two lines denote
standard basis measurements with outcomes k and l respectively.)

(b) In measurement-based computing, what does it mean for a mea-
surement pattern to have logical depth 1? Let C be any quantum circuit on
a single qubit, comprising only H = J(0) and J(π/2) gates before a final
standard basis measurement. The initial state of the qubit is |+〉. Show
that C may be simulated by a measurement pattern with logical depth one.
[Hint: it may be useful to note that J(−π/2) = XJ(π/2).]
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NOTATIONS AND FACTS FOR QUESTION 4

Quantum gates:

X and Z denote the standard Pauli gates.

J(α) =
1√
2

(

1 eiα

1 −eiα
)

E denotes the two qubit controlled-Z gate and it maps |a〉 |b〉 to (−1)ab |a〉 |b〉
for a, b ∈ {0, 1}.
Subscripts on gate names denote the qubits to which they are applied.
Single qubit states:

|α±〉 = 1√
2
(|0〉 ± e−iα |1〉).

|+〉 = 1√
2
(|0〉+ |1〉).

You may assume the following commutation relations:

Ji(α)X
s
i = e−isαZs

i Ji((−1)sα)
Ji(α)Z

s
i = Xs

i Ji(α)
EijX

s
i = Xs

i Z
s
jEij

EijZ
s
i = Zs

iEij.

END OF PAPER
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