

MATHEMATICAL TRIPOS Part III

Tuesday, 6 June, 2017 1:30 pm to 3:30 pm

PAPER 324

QUANTUM COMPUTATION

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Throughout this question, for any integer N let \mathbb{Z}_N denote the set of integers modulo N. Let \mathcal{H}_N denote an N dimensional state space with standard orthonormal basis $\mathcal{B} = \{ | 0 \rangle, \ldots, | N - 1 \rangle \}$. You may assume that measurements relative to the basis \mathcal{B} and the quantum Fourier transform mod N may both be implemented in poly(log N) time. You may also assume that the number of integers less than N that are coprime to N grows as $O(N/\log \log N)$ and that $x \in \mathbb{Z}_N$ has a multiplicative inverse mod N iff xand N are coprime.

(a) Let $f : \mathbb{Z}_N \to \mathbb{Z}_N$ be a periodic function which is one-to-one within each period and which can be computed by a poly(log N) sized circuit. Explain how the period r of f can be determined in poly(log N) time by a quantum computation which succeeds with probability $O(1/\log \log N)$, and after which we also learn if the computation has been successful or not.

(b) For any prime p consider the set $\mathbb{Z}_p^* = \{1, 2, \ldots, p-1\} \subset \mathbb{Z}_p$ of nonzero integers modulo p, with the operation of multiplication mod p. A generator for \mathbb{Z}_p^* is an element g whose powers generate all of \mathbb{Z}_p^* i.e. for all $x \in \mathbb{Z}_p^*$ there is $y \in \mathbb{Z}_{p-1}$ with $x = g^y \mod p$. y is called the *discrete logarithm* of x (to base g). You may assume that \mathbb{Z}_p^* always has a generator g and that it satisfies $g^{p-1} \equiv 1 \mod p$.

Suppose we are given a generator g and element $x \in \mathbb{Z}_p$, and we wish to compute its discrete logarithm y.

(i) Consider the function $f: \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1} \to \mathbb{Z}_p^*$ given by

$$f(a,b) = g^a x^{-b} \mod p.$$

For each fixed $c \in \mathbb{Z}_p^*$, show that there is a corresponding fixed $k \in \mathbb{Z}_{p-1}$ such that

$$f(a,b) = c$$
 iff $a = by + k \mod p - 1$.

(ii) Suppose we have constructed the state

$$\left| \phi \right\rangle = \frac{1}{(p-1)} \sum_{a, b \in \mathbb{Z}_{p-1}} \left| a \right\rangle \left| b \right\rangle \left| f(a, b) \right\rangle$$

(in $\mathcal{H}_{p-1} \otimes \mathcal{H}_{p-1} \otimes \mathcal{H}_p$) and we measure the third register obtaining a result c_0 . Find the post-measurement state of the first two registers.

(iii) If we then apply the quantum Fourier transform mod (p-1) to each of these two registers and measure both registers, which output pairs $(c_1, c_2) \in \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}$ can be obtained with non-zero probability? Can y be determined from any such pair? Give a reason for your answer.

UNIVERSITY OF

 $\mathbf{2}$

(a) Let \mathcal{B}_n denote the set of all *n*-bit strings and write $N = 2^n$. Let $f: \mathcal{B}_n \to \mathcal{B}_1$ be a function taking value 1 exactly k times, with f(x) = 1 iff $x \in G = \{x_1, \ldots, x_k\}$. The Grover operator is defined by $Q = -H_n I_0 H_n I_G$ where $H_n = H \otimes \ldots \otimes H$ is the Hadamard operation on each of n qubits, and for all $x \in \mathcal{B}_n$, I_0 and I_G are defined by

$$I_0 | x \rangle = \begin{cases} -|x\rangle & \text{if } x = 0 \dots 0 \\ |x\rangle & \text{if } x \neq 0 \dots 0 \end{cases} \qquad I_G | x \rangle = \begin{cases} -|x\rangle & \text{if } x \in G \\ |x\rangle & \text{if } x \notin G. \end{cases}$$

Write $|\psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{x \in \mathcal{B}_n} |x\rangle$. Derive a geometrical interpretation of the action of Q in a suitable part of the space of n qubits, which should be clearly defined. Using this interpretation, show that if I_G is given as a black box then an x in G may be obtained with high probability (better than a half say) with $O(\sqrt{N/k})$ uses of I_G , if N is large and k is small compared to N.

(b) Let $g: \mathcal{B}_n \to \mathcal{B}_n$ be a 2-to-1 function i.e. for every y in the range of g there are precisely two strings $x \in \mathcal{B}_n$ with g(x) = y. A collision is a pair of strings $x_1, x_2 \in \mathcal{B}_n$ with $g(x_1) = g(x_2)$. The standard quantum oracle U_g for g is the unitary operation on 2n qubits defined by

$$U_g |x\rangle |y\rangle = |x\rangle |y \oplus g(x)\rangle \qquad x, y \in \mathcal{B}_n$$

where \oplus denotes bitwise addition of *n*-bit strings.

Suppose that we are given U_g as a black box operation. Using the result of (a), or otherwise, show that a collision may be found with high probability (better than a half say) with $O(N^{1/3})$ uses of U_g . [Hint: start by partitioning the domain of g into sets A and B of sizes $N^{1/3}$

and $(N - N^{1/3})$ and listing all the values of g(x) for $x \in A$. We might find a collision there, but if we're not so lucky, what should we do next with B?]

UNIVERSITY OF

3

4

(a) Let ϕ be a real number satisfying $\phi = c/2^n$ for some known integer n and unknown integer c with $0 \leq c < 2^n$. Let U be a unitary operator, and let $|\psi\rangle$ be a quantum state such that $U |\psi\rangle = e^{2\pi i \phi} |\psi\rangle$.

Describe a quantum algorithm which, given access to a controlled-U operation and the ability to produce $|\psi\rangle$, outputs ϕ exactly. Give an explanation of the correctness of your algorithm and include a quantum circuit for it. (You may treat the inverse quantum Fourier transform (QFT⁻¹) as a black box in your circuit, i.e. you need not give a circuit for QFT⁻¹).

(b) Let A be an n-qubit Hermitian operator with all eigenvalues λ_i distinct and each having the form $\lambda_i = c_i/2^n$ for an integer $0 \leq c_i < 2^n$. Suppose further that we are able to implement the unitary $U = e^{2\pi i A}$ and its controlled version controlled-U.

We are given an *n*-qubit state $|b\rangle$ (as a quantum physical state, with its actual identity possibly unknown) and we wish to produce the state $|\psi\rangle$ given by the vector $A |b\rangle$ normalised, with some non-zero probability. We have available a universal set of gates and in particular we are able to implement controlled rotations of the form

$$|c\rangle |0\rangle \longrightarrow |c\rangle \; (\cos \theta_c |0\rangle + \sin \theta_c |1\rangle)$$

where $0 \leq c < 2^n$ is an integer and $\sin \theta_c = c/2^n$. Here the first and second registers are an *n*-qubit and one-qubit register respectively.

(i) Let $|u_j\rangle$ be a normalised eigenvector of A belonging to λ_j , and let $|b\rangle = \sum \beta_j |u_j\rangle$. Show how we can construct the state

$$\sum \beta_j \sqrt{1 - \lambda_j^2} | u_j \rangle | c_j \rangle | 0 \rangle + \beta_j \lambda_j | u_j \rangle | c_j \rangle | 1 \rangle$$

from $|b\rangle$. Here the first two registers are each *n*-qubit registers and the third is a one-qubit register.

(ii) Hence (or otherwise) show how the state $|\psi\rangle$ may be obtained with probability of success exceeding the square of the smallest eigenvalue of A. $\mathbf{4}$

Please see the next page for a list of notations used in this question and facts that may be used without proof.

(a) (i) State how the operation $J(\alpha)$ may be applied to a qubit in any state $|\psi\rangle$ by using only the operation E and a suitable single qubit measurement (and any ancillary qubits in suitable fixed states as needed). You need not prove the validity of your claimed process.

(ii) Consider the graph state $|\psi_{2\times 2}\rangle$ corresponding to the graph

Using the formula given below for the action of E (or otherwise) show that if one of the qubits is measured in the computational basis with result r, the remaining qubits will be left in the state $(Z^r \otimes I \otimes Z^r) |\psi_3\rangle$, where $|\psi_3\rangle$ is the graph state corresponding to the graph

(iii) Next, the first qubit of the state $(Z^r \otimes I \otimes Z^r) |\psi_3\rangle$ is measured in the basis $\{|\alpha_+\rangle, |\alpha_-\rangle\}$, and result *s* is obtained. (Here s = 0 respectively 1 corresponds to the first, respectively second, vector in the measurement basis). Show that the remaining qubits (now labelled 2 and 3) are left in the state

$$E_{23} X_2^{(r+s)} J(\alpha)_2 Z_3^r \ket{+}_2 \ket{+}_3.$$

(iv) Using your previous answers, explain how you could simulate the results of the circuit

$$\begin{array}{c} |+\rangle & -J(\alpha) \\ |+\rangle & -\overline{\hspace{1cm}} & -\overline{\hspace{1cm}} & -\overline{\hspace{1cm}} \\ |+\rangle & -\overline{\hspace{1cm}} & -\overline{\hspace{1cm}} \\ \end{array} \right)$$

using single-qubit measurements on $|\psi_{2\times 2}\rangle$ and classical processing of the results. (In the above diagram the final boxes on the two lines denote standard basis measurements with outcomes k and l respectively.)

(b) In measurement-based computing, what does it mean for a measurement pattern to have *logical depth 1*? Let C be any quantum circuit on a single qubit, comprising only H = J(0) and $J(\pi/2)$ gates before a final standard basis measurement. The initial state of the qubit is $|+\rangle$. Show that C may be simulated by a measurement pattern with logical depth one. [Hint: it may be useful to note that $J(-\pi/2) = XJ(\pi/2)$.]

NOTATIONS AND FACTS FOR QUESTION 4

 $Quantum \ gates:$

X and Z denote the standard Pauli gates.

$$J(\alpha) = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & e^{i\alpha} \\ 1 & -e^{i\alpha} \end{array} \right)$$

E denotes the two qubit controlled-Z gate and it maps $|a\rangle |b\rangle$ to $(-1)^{ab} |a\rangle |b\rangle$ for $a, b \in \{0, 1\}$.

Subscripts on gate names denote the qubits to which they are applied.

Single qubit states:

$$|\alpha_{\pm}\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm e^{-i\alpha} |1\rangle).$$

 $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle).$

You may assume the following commutation relations:

$$J_i(\alpha)X_i^s = e^{-is\alpha}Z_i^s J_i((-1)^s\alpha)$$

$$J_i(\alpha)Z_i^s = X_i^s J_i(\alpha)$$

$$E_{ij}X_i^s = X_i^s Z_j^s E_{ij}$$

$$E_{ij}Z_i^s = Z_i^s E_{ij}.$$

END OF PAPER