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1

Viscous evolution and vertical structure

(a) A young protoplanetary disk is receiving mass from the interstellar medium.
The equation governing its evolution is

∂Σ

∂t
=

1

2πr
∂rF + S(r),

where Σ is the disk surface density, S(r) is the steady supply rate from the disk’s
environment, and the radial mass flux F is defined by

F = 6πr1/2∂r

(

r1/2νΣ
)

,

with ν the mean turbulent viscosity. The viscous torque vanishes at the disk’s inner radius
r = r1, but there is no radial mass flux at the outer radius r = r2.

(i) Show that the steady state surface density profile is

Σ =
1

3νr1/2

∫ r

r1

u−1/2

(
∫ r2

u
v S(v)dv

)

du.

(ii) Suppose the mass supply is localised entirely at the outer radius, so that
S = S0δ(r − r2), where δ is the Dirac delta function and S0 a constant. Calculate and
comment on the resulting profile for Σ.

(b) In standard notation, the vertical structure of an accretion disc is described by
the following equations

dP

dz
= −ρΩ2z,

dF

dz
=

9

4
µΩ2,

dT

dz
= −

3κρF

16σT 3
, P =

kρT

µmmp
.

(i) Suppose that µ = F = 0 and Pρ−γ is a constant. Solve for the disk’s vertical
structure, showing that

ρ = ρm

(

1−
z2

H2

)1/(γ−1)

,

where ρm is the density at the midplane, and H is the disk’s semi-thickness. Give an
expression for H in terms of the constant parameters of the disk.

(ii) Consider a dwarf nova disk in which µ 6= 0 and F 6= 0 and where the opacity is
dominated by negative Hydrogen ions. In this regime we have the approximation

κ = κ0ρ
1/3T 10,

with κ0 a constant. Assuming that µ = αP/Ω, where α is a constant, employ an order of
magnitude approach to show that

H41/3 ∼

(

σ

κ0

)

(µmmp

k

)

−6
Ω−15α−1Σ−7/3,
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where Σ ∼ ρH is the disk’s surface density. Obtain an estimate for the angular thickness
H/r and comment on the flaring of the disk. How does the sound speed vary with radius?

(iv) By observing how the cooling and heating rates depend on T , give a qualitative
argument for why the dwarf nova disk is thermally unstable in this regime.
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2

The vertical shear instability

Strongly irradiated disks possess a rotation profile that depends on z, in addition to
radius. A small region of a disk exhibiting vertical shear can be described by the following
shearing sheet model

∂tu+ u · ∇u = −
1

ρ0
∇P − 2Ω ez × u+ 3Ω2x ex − 2Ω2 q z ex,

∇ · u = 0

where u, P , and ρ0 are the velocity, pressure, and (constant) density, respectively. Ω is
the constant rotation frequency at the origin of the sheet, and q is a small dimensionless
constant.

(a) Derive the energy equation in the form

∂t
(

1
2ρ0|u|

2
)

+∇ · F = S,

where F and S are to be determined. Does the model conserve energy?

(b) Show that the governing equations admit the following steady solution

u = −1
2 (3x− 2qz) Ω ey, P = P0,

where P0 is a constant. Describe in words what this solution corresponds to.

(c) Consider perturbations to this equilibrium of the form

u′ = ũf(ξ)est, P ′ = P̃ g(ξ)est,

where ũ and P̃ are constants, s is a growth rate, and f and g are non-constant functions
of the variable ξ = kxx+ kzz, for kx and kz constant wavenumbers.

Using incompressibility, show that u′ · ∇u′ = 0.

What relationship must hold between g and f for the perturbations to be solutions
of the governing equations? Show that ũ and P̃ satisfy

sũx = −
1

ρ0
kxP̃ + 2Ωũy, sũy = −

1

2
Ωũx − qΩũz,

sũz = −
1

ρ0
kzP̃ , kxũx + kzũz = 0.

(d) Derive the dispersion relation for these perturbations:

s2 = −
k2z
k2

Ω2

(

1− 2q
kx
kz

)

.

What is the instability criterion?

Show that the maximum growth rate is Ωq, in the limit 0 < q ≪ 1.
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3

Density waves and dust

(a) The equations of a razor-thin compressible disk in the shearing sheet are

∂tu+ u · ∇u = −
1

Σ
∇P − 2Ωez × u−∇Φt,

∂tΣ+ u · ∇Σ = −Σ∇ · u,

where u, Σ, and P are the velocity, surface density, and pressure. The tidal potential is
Φt = −(3/2)Ω2x2, and the fluid is assumed barotropic, P = P (ρ).

(i) Write down the linearised equations governing small axisymmetric perturbations
to the equilibrium: Σ = Σ0 = constant, u = u0 = −(3/2)Ωx ey .

(ii) Assume that the perturbations are ∝ exp(ikx − iωt), where k is the radial
wavenumber and ω is a wave frequency. Derive the dispersion relation for density waves in
the shearing sheet and give a physical explanation for the various terms in this expression.

(iii) In the limit of long wavelengths, show that the real part of the velocity
components of the density wave (minus the background shear) may be approximated
by

u′x = u cos(kx− Ωt), u′y = 1
2u sin(kx− Ωt), (†)

where u is an arbitrary real constant.

(b) Suppose dust particles are distributed uniformly throughout the gas. We can
model the dust in the shearing sheet as a pressureless fluid via the following equation

∂tv + v · ∇v = −2Ωez × v−∇Φt − ǫΩ(v− u),

where v denotes the velocity of the dust fluid, ǫ is a constant drag coefficient, and u is the
velocity of the gas.

When u = u0 (given above) the associated steady solution in the dust is v = v0 =
u0. When a density wave passes through the gas, the dust is agitated and v = v0 + v′,
where v′ is the perturbation induced by the density wave.

(i) Set u = u0+u′, using (†). Assume the dust perturbation v′ is small, and suppose
the dust is only weakly coupled to the gas, so that 0 < ǫ ≪ 1. Derive the following equation
for v′x

∂2
t v

′

x + 2ǫΩ ∂tv
′

x + (1 + ǫ2)Ω2 v′x = 2Ω2ǫu sin(kx− Ωt),

which describes a forced and damped oscillator.

(ii) By considering this equation’s complementary function and particular integral,
show that at late times the dust fluid supports density waves oscillating in phase with the
gas and at the same amplitude.

(iii) The dust surface density Σd obeys the equation

∂tΣd = −∇ · (Σdv).

At late times, what is the maximum fractional concentration of the dust in the crests of
the density waves?

Part III, Paper 321 [TURN OVER



6

END OF PAPER

Part III, Paper 321


