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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u ,

∂p

∂t
+ u · ∇p = −γp∇ · u ,

ρ

(

∂u

∂t
+ u · ∇u

)

= −ρ∇Φ−∇p+
1

µ0
(∇×B)×B ,

∂B

∂t
= ∇× (u×B) ,

∇ ·B = 0 ,

∇2Φ = 4πGρ .
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(a) In magnetohydrodynamics, the cross-helicity contained in a fixed volume V is
defined as

Hc =

∫

V
u ·B dV .

Starting from the equations of ideal MHD, derive the conservation law

∂

∂t
(u ·B) +∇ ·

[

u× (u×B) + (1
2
u2 +Φ+ h)B

]

= TB · ∇s ,

where h = e + p/ρ. Name the quantities h, T and s appearing in this equation.
Under what conditions is Hc independent of time?

[You may assume the identity ∇ · (F ×G) = G · (∇× F )− F · (∇×G).]

(b) The Elsässer variables of MHD are defined by

z± = u± va ,

where u is the fluid velocity and va = (µ0ρ)
−1/2B is the Alfvén velocity. Starting

from the equations of ideal MHD for an incompressible fluid of uniform density,
show that the Elsässer variables satisfy

∂z+

∂t
+ z− · ∇z+ = −∇ψ ,

∂z−

∂t
+ z+ · ∇z− = −∇ψ , ∇ · z± = 0 ,

where ψ should be defined.

Deduce that the integrals

I+ =

∫

V
|z+|

2 dV , I− =

∫

V
|z−|

2 dV

are independent of time, if u and B satisfy suitable conditions (which should be
stated) on the boundary of a fixed volume V .

Determine how these integrals are related to the (kinetic + magnetic) energy and
the cross-helicity contained in the volume V .
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A perfect gas of adiabatic exponent γ = 3/2 undergoes a steady, spherically
symmetric flow in the exterior of a spherical mass M . Self-gravity, rotation and magnetic
fields may be neglected.

Show that the problem can be reduced to the algebraic equation

λ
(

y4 + 4y−1
)

= x4 + 4x−1 ,

where the dimensionless variables x and y are related to the Mach number M of the flow
and the radial coordinate r by

x =

(

r

rs

)1/5

, y = M2/5 .

Relate the two constants λ and rs to the physical parameters of the problem.

Sketch the solution curves in the (x, y) plane for various positive values of λ. Argue
that the flow can undergo a sonic transition at r = rs, if λ has a special value. Find
the simple analytical form of one of the two transonic solutions, and determine how the
density, pressure and velocity depend on r in this special solution. Derive, and interpret
physically, the approximate behaviour of the other transonic solution in the limits of large
and small r.

If a steady transonic flow is arrested in an adiabatic shock after it has become
supersonic, explain briefly why λ increases on passing through the shock, while the
Bernoulli constant is unchanged. Deduce that the flow jumps to a subsonic solution
branch, and sketch this on your graph.
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Consider a plane-parallel model of a stellar atmosphere with uniform gravity
g = −g ez, where (x, y, z) are Cartesian coordinates. The basic state is in magnetostatic
equilibrium, with density ρ(z), pressure p(z) and magnetic field B = B(z)ey. Given that
the isothermal sound speed cs and the Alfvén speed va are independent of z in the basic
state, determine the vertical profiles of density, pressure and magnetic field. Show that
ρ ∝ exp(−z/H), and relate the density scaleheight H to g, cs and va.

You may assume that the linearized equation of motion governing a small displace-
ment ξ to a magnetostatic equilibrium, neglecting self-gravity, for a perfect gas of adiabatic
exponent γ, is

ρ
∂2ξ

∂t2
= g δρ−∇δΠ+

1

µ0
(δB · ∇B +B · ∇δB) ,

where the Eulerian perturbations of density, magnetic field and total pressure are given
by

δρ = −ρ∇ · ξ − ξ · ∇ρ ,

δB = B · ∇ξ −B(∇ · ξ)− ξ · ∇B ,

δΠ = −

(

γp+
B2

µ0

)

∇ · ξ +
1

µ0
B · (B · ∇ξ)− ξ · ∇Π .

Verify that these equations admit solutions in which

ξ = Re
[

ξ̃ exp
(

ikxx+ ikyy + ikzz +
z

2H
− iωt

)]

,

δΠ

ρ
= Re

[

ψ exp
(

ikxx+ ikyy + ikzz +
z

2H
− iωt

)]

,

where ξ̃ and ψ are complex constants, k is a real wavevector with three components and
ω is a complex frequency. Deduce the linearized equations in the algebraic form

−ω2ξ̃x = −ikx ψ − k2yv
2
a ξ̃x ,

−ω2ξ̃y = −iky (ψ + v2a∆)− k2yv
2
a ξ̃y ,

−ω2ξ̃z = g

(

∆−
ξ̃z
H

)

−

(

ikz −
1

2H

)

ψ − k2yv
2
a ξ̃z ,

with

ψ = −(v2s + v2a)∆ + v2a iky ξ̃y + gξ̃z ,

∆ = ikxξ̃x + iky ξ̃y +

(

ikz +
1

2H

)

ξ̃z ,

where vs is the adiabatic sound speed.

On what general grounds should we expect the roots of the dispersion relation to
have real values of ω2? Show that disturbances with ω2 = 0 and ky 6= 0 satisfy

v2s∆ = gξ̃z ,

−(k2x + k2y)ψ = k2yv
2
a

(

ikz +
1

2H

)

ξ̃z .
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Deduce that the condition for marginal stability is

(

|k|2 +
1

4H2

)

k2yv
2
a +

g

H

(

1−
gH

v2s

)

(k2x + k2y) = 0 .

Assuming that the boundary conditions do not constrain the admissible values of k, deduce
that the atmosphere is unstable if and only if gH > v2s . Show that this condition is
equivalent to

β(γ − 1) < 1 ,

where β is the ratio of gas pressure to magnetic pressure. Discuss briefly why the
atmosphere becomes unstable if it is sufficiently strongly magnetized.
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(a) A simplified model of a star or giant planet consists of a self-gravitating, incompress-
ible fluid of mass M1 and uniform density ρ1. Solve for the hydrostatic equilibrium
of such a body in the absence of external masses, neglecting rotation.

Explain why small oscillation modes of this system have irrotational displacements
of the form

ξ = Re
[

∇U(x) e−iωt
]

,

where U(x) is a scalar potential satisfying Laplace’s equation. Show that, when
the effects of self-gravity are included, the mode frequencies are given by ω2 = ω2

l ,
where

ω2
l =

2l(l − 1)

2l + 1

GM1

R3
1

,

R1 is the radius of the body and l is a positive integer. Explain physically why
ω2 = 0 in the case l = 1.

[You may assume that the interior and exterior solid spherical harmonics, rlY m
l and

r−l−1Y m
l , are solutions of Laplace’s equation, where l is a non-negative integer, m

is an integer satisfying |m| 6 l and Y m
l (θ, φ) is a spherical harmonic function. You

may also assume that the Lagrangian pressure perturbation vanishes at the surface
of the body.]

(b) The body is now placed in a circular orbit of radius a with a companion of mass
M2. The orbital frequency ωo is given by

ω2
o =

G(M1 +M2)

a3
.

The dominant component of the tidal force per unit mass experienced by the first
body is of the form

Re
[

−∇Ψ(x) e−iωt
]

,

with

Ψ(x) = ψ
GM2

a3
rlY m

l ,

where l = 2, ω = 2ωo and ψ is a dimensionless constant of order unity. Explain
briefly why the tidal forcing has this form. [Spin may be neglected, and you are not
required to determine the value of ψ.]

By modifying the linearized equation of motion used in part (a) to include the tidal
force, and assuming that the displacement has the same frequency as the tidal force,
show that the radial displacement at the surface of the first body is

ǫR1

(

ω2
2

ω2 − ω2
2

)

Re
(

ψY m
l e−iωt

)

,

according to linear theory, where

ǫ =
5

2

M2

M1

(

R1

a

)3
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and ω2 is the frequency of the l = 2 f mode determined in part (a). Deduce that
the tidal forcing resonates with this mode when

(

R1

a

)3

=
1

5
(1− 2ǫ) .

END OF PAPER
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