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(a) Consider the 3+1 formalism for general relativity with line element

ds2 = gµνdx
µdxν = −N2dt2 + (3)gij(dx

i −N idt)(dxj −N jdt) , (∗)

where N(xi, t) is the lapse function, N i(xi, t) is the shift vector, and (3)gij(x
i, t) is the

three-metric on constant time spacelike hypersurfaces Σ. (Latin indices i = 1, 2, 3; Greek
µ = 0, 1, 2, 3 .) We can define quantities on the three-dimensional hypersurface Σ using the
projection tensor

Pµ
α = δµα + nµnα ,

where nα=(−N, 0, 0, 0) is a future-pointing normal to Σ with nµn
µ = −1.

(i) Verify that Pµ
α nµ = 0. Show that the projected three-dimensional covariant derivative

of the three-metric (3)gij on Σ vanishes, that is,

(3)gij|k ≡ Pα
iP

β
jP

ℓ
k∇ℓ (P

µ
αP

ν
β gµν) = 0 ,

where ∇ℓ is the four-dimensional covariant derivative.

(ii) We can define the extrinsic curvature Kµν for the constant time slice Σ as Kµν =
−Pα

µP
β
ν ∇αnβ . Show that nµ∇νnµ = 0 and hence that Kµν = −Pα

µ∇αnν . The Frobe-
nius theorem states that, if nµ is hypersurface orthogonal, then it satisfies n[α∇βnλ] = 0.
(Here, the permutation symbol is [αβλ] = αβλ + βλα + λαβ − βαλ − αλβ − λβα.) Use
this result to show that Kµν is a symmetric tensor.

(b) For a flat background FLRW model, we can linearise the 3+1 metric (∗) for
scalar perturbations using the substitutions

N = N̄(1 + Ψ) , Ni = −a2B,i ,
(3)gij = a2[(1 − 2Φ)δij + 2E,ij ] , (†)

where Ψ(x, t),Φ(x, t), B(x, t) and E(x, t) are arbitrary functions, while the scale factor
a(t) and the background lapse N̄(t) depend only on time.

(i) Given that the extrinsic curvature is Kij = − 1
2N

(

(3)gij,0 +Ni|j +Nj|i

)

, show that the
linearised curvature for the perturbed metric (†) becomes

Ki
j =

(3)gikKkj = −Hδij + 1
3κδ

i
j − (∂i∂j − 1

3△δ
i
j)χ ,

where κ ≡ 3(Φ̇/N̄ + HΨ) − △χ and χ ≡ −(a2/N̄ )(B − Ė), with H = ȧ/(N̄a) and the
Laplacian △ = ∂i∂

i = ∇2/a2.

(ii) Linearise the Einstein equation (3)R+K2−KijK
ij = 16πGρ to find the corresponding

perturbation equation in terms of the variables κ,Φ and δρ, where the perturbed energy
density ρ(x, t) ≡ ρ̄(t) + δρ(x, t).

[You may assume the linearised Ricci scalar is (3)R = 4△Φ.]
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(i) Explain briefly why the stress–energy tensor of a gas of photons, described by a one-
particle distribution function f , is given by

T µν =

∫

d3p

E(p)
fpµpν ,

where p is the 3-momentum and E(p) = |p| is the energy of a photon defined with respect
to an orthonormal tetrad, and pµ is the photon 4-momentum.

In linear perturbation theory, the distribution function can be written as

f(η,x, ǫ, e) = f̄(ǫ)

[

1− d ln f̄

d ln ǫ
Θ(η,x, e)

]

,

where f̄(ǫ) is the unperturbed distribution function, which depends only on comoving
energy ǫ = aE with a the scale-factor. Here, e is the photon direction (with p = Ee), η
is conformal time, x is comoving position, and Θ describes the dimensionless temperature
anisotropies. Denoting the energy density relative to the orthonormal tetrad as ρ̄(1 + δ),
where ρ̄ is the unperturbed energy density, the pressure as P̄+δP , with P̄ the unperturbed
pressure, the momentum density as q = (ρ̄+ P̄ )v, and the anisotropic stress as Πı̂̂, show
that

ρ̄ =
4π

a4

∫

dǫ ǫ3f̄(ǫ) and P̄ =
1

3
ρ̄ .

Show further that

δ = 4

∫

de

4π
Θ , v = 3

∫

de

4π
Θe , Πı̂̂ = −4ρ̄

∫

de

4π
Θ

(

eı̂ê − 1

3
δı̂̂

)

,

and δP = ρ̄δ/3.

(ii) For freely-propagating photons, the distribution function is conserved along the photon
path in phase space. Show that in linear perturbation theory

∂Θ

∂η
+ e ·∇Θ− d ln ǫ

dη
= 0 . (∗)

For scalar perturbations in the conformal Newtonian gauge, d ln ǫ/dη = φ̇− e ·∇ψ,
where φ and ψ are the metric potentials and overdots denote partial differentiation with
respect to η. By integrating (∗) over e, after multiplication by suitable tensor products of
e, derive the continuity equation

δ̇ +
4

3
∇ · v − 4φ̇ = 0

and the Euler equation

v̇ı̂ +
1

4
δij∂jδ −

3

4ρ̄
∂jΠ

ı̂̂ + δij∂jψ = 0 .

[You may wish to use
∫

de
(

eı̂ê − δı̂̂/3
)

= 0.]
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(iii) What is the physical interpretation of the 4-vector

Jµ =

∫

d3p

E(p)
fpµ ?

Discuss under what circumstances ∇µJ
µ = 0.
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Vector perturbations of a spatially-flat universe can be described by the line element

ds2 = a2(η)
[

−dη2 + 2Bidηdx
i + δijdx

idxj
]

,

where a(η) is the scale factor at conformal time η and Bi is a divergence-free 3-vector
(δij∂iBj = 0). Throughout this question you should work to first order in the perturbation
Bi.

(i) Show that the tetrad vectors with coordinate components

(E0)
µ = a−1δµ0 and (Ei)

µ = a−1 (Biδ
µ
0 + δµi )

are orthonormal.

By writing the photon 4-momentum as pµ = a−1ǫ
[

(E0)
µ + eı̂(Ei)

µ)
]

, where ǫ is the
comoving energy and eı̂ are the direction cosines, show that

1

ǫ

dǫ

dη
+ eı̂Ḃi = 0 ,

where overdots denote partial differentiation with respect to conformal time.

[You may assume the following connection coefficients:

Γ0
00 = H , Γ0

0i = HBi , Γ0
ij = Hδij −

1

2
(∂iBj + ∂jBi) ,

where H = ȧ/a.]

(ii) Consider a single Fourier mode of the metric perturbation Bi, with wavevector k = kẑ
lying along the z-axis. Explain briefly why this can be written as a superposition of two
helicity states, labelled ±, each of the form

B
(±)
i (η, kẑ) =

i√
2
B(±)(η, kẑ)m

(±)
i (ẑ) , (∗)

where the complex basis vectors m
(±)
i (ẑ) = (δi1 ± iδi2)/

√
2.

The Boltzmann equation for the fractional temperature anisotropy in the cosmic
microwave background, Θ(η,x, e), can be written for vector perturbations as

∂Θ

∂η
+ e ·∇Θ+ e · Ḃ = τ̇Θ− 1

10
τ̇

2
∑

m=−2

Θ2mY2m(e)− τ̇e · vb ,

where vb is the baryon peculiar velocity, τ is the optical depth to Thomson scattering,
and Θlm are the spherical multipoles of Θ. For the ± helicity states given in (∗), show
that the source terms e · B and e · vb in the Boltzmann equation generate anisotropies
with m = ±1 only, so that we can write

Θ(±)(η, kẑ, e) =
1√
2

∑

l>1

(−i)l
√

2l + 1

4π
Θ

(±)
l (η, kẑ)Yl±1(e) .
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Show that the Θ
(±)
l (η, kẑ) satisfy the Boltzmann hierarchy

Θ̇
(±)
l + k

[

√

(l + 1)2 − 1

2l + 3
Θ

(±)
l+1 −

√
l2 − 1

2l − 1
Θ

(±)
l−1

]

= τ̇Θ
(±)
l

− 1

10
τ̇Θ

(±)
2 δl2 ∓

(

Ḃ(±) + τ̇ v
(±)
b

)

δl1 ,

where v
(±)
b (η, kẑ) is the amplitude of the ± helicity state of vb(η, kẑ), defined by analogy

to (∗).
[Note that Y1±1 = ∓

√

3/(8π) sin θe±iφ, and

cos θ Ylm =

√

(l + 1)2 −m2

(2l + 3)(2l + 1)
Yl+1m +

√

l2 −m2

(2l + 1)(2l − 1)
Yl−1m .

]
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(a) According to the in-in formalism, the leading order correction to an operator Q during
inflation is given by the expectation value

〈Q(t)〉 = Re
〈

−2iQI(t)

∫ t

−∞(1−iE)
HI

int(t
′)dt′

〉

, (†)

where HI
int is the interaction Hamiltonian for single-field inflation at third-order. We

assume that Q and HI
int are given in terms of the linear density perturbation ζ, which is

a Gaussian random field with power spectrum,

〈ζ(k, τ)ζ(k′, τ)〉 = (2π)3uk(τ)u
∗
k
(τ) δ(k + k′) ,

with mode functions uk(τ) and their conformal time derivatives u′
k
(τ) given by

uk(τ) =
H

√

4ǫM2
Plcsk

3
(1 + ikcsτ) e

−ikcsτ , u′k(τ) =
H

√

4ǫM2
Plcsk

3
c2sk

2τe−ikcsτ ,

where we have allowed for a non-trivial sound speed cs different from unity. During
inflation we assume the scale factor is a ≈ −1/(Hτ) with conformal time τ (i.e. dt = adτ)
and ζ̇ = dζ/dt and ζ ′ = dζ/dτ) and that H, ǫ and cs are effectively constant.

(i) For the interaction Hamiltonian,

HI
int = −M2

Pl

∫

d3x
a3ǫ

H

(ǫ+ 1− c2s )

c2s
ζ̇3 ,

show that the three point correlator (bispectrum) of ζ reduces to the following:

〈ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)〉 = 6Re
(

− 2i

∫

dτ M2
Pl

ǫ(ǫ+ 1− c2s )

c2sH
2τ

(‡)

× uk1
(0)uk2

(0)uk3
(0)u′

∗
k1
(τ)u′

∗
k2
(τ)u′

∗
k3
(τ) (2π)3δ(k1 + k2 + k3)

)

,

stating clearly any assumptions that you have made.

(ii) Substitute the mode functions explicitly in the expression (‡) and integrate to find an
expression for the bispectrum B(k1, k2, k3). Briefly discuss the level of non-Gaussianity in
the limits cs ≪ 0 and cs → 1 in comparison to standard single field inflation. Discuss which
triangle configurations (if any) dominate the bispectrum signal-to-noise by considering the
behaviour of the shape function S(k1, k2, k3) ∼ (k1k2k3)

2B(k1, k2, k3).

(b) The reduced CMB bispectrum bl1l2l3 arises from the primordial bispectrum
B(k1, k2, k3) through the integral expression:

blocl1l2l3 =

(

2

π

)3 ∫

dx

∫

dk1 dk2 dk3 (x k1k2k3)
2B(k1, k2, k3) (*)

× ∆l1(k1)∆l2(k2)∆l3(k3) jl1(k1x)jl2(k2x)jl3(k3x) .
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Assume that we have a ‘constant’ primordial bispectrum given by

B(k1, k2, k3) = fNL[P (k1)P (k2)P (k3)]
2/3 ≈ fNL 4π

4∆4
ζ/(k1k2k3)

2 ,

for which we ignore the scale-dependence of the variance ∆2
ζ . Restrict attention to

large angular scales (l ≪ 200), where we can approximate the transfer functions by
∆l(k) = 1

5jl(∆τk) with ∆τ = τ0 − τdec, and integrate the reduced bispectrum (∗) to
find

bl1l2l3 =
AfNL

(2l1 + 1)(2l2 + 1)(2l3 + 1)

[

1

l1 + l2 + l3 + 3
+

1

l1 + l2 + l3

]

.

Here, you should state the magnitude of the constant A. Briefly comment on the scale-
dependence of this result.
[

Hint: You may assume the following integral for Bessel function products:

∫

dk jl(k)jl(kx) =

{

π x−(l+1)/(2(2l + 1)), x > 1 ,

π xl/(2(2l + 1)), x < 1 .

]

END OF PAPER
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