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(a) The Friedmann and acceleration equations describing our universe are,

(

ȧ

a

)2

=
8πG

3
ρ− K

a2
ä

a
= −4πG

3
(ρ+ 3P ) .

Use these to show that,

dΩ

d ln a
= (1 + 3ω) Ω (Ω− 1) ,

where you should define both ω and Ω.

(b) Perturb Ω around Ω = 1 and show that the perturbation grows as a1+3ω. Use this to
describe the flatness problem.

(c) Another key problem of the standard big bang model is the horizon problem, which
we summarised in lectures as that for ordinary matter the Hubble radius is always growing,

d

dt
(H−1) > 0 .

By showing that,

d

dt

(

H−1
)

= A(1 + 3ω) ,

where A is always positive, argue that any universe that has a flatness problem will
generally always have a horizon problem and vice versa.

(d) During phase transitions in the early universe topological defects can be produced.
One interesting example are cosmic strings, which are one dimensional defects. Consider
a universe that contains a network of infinite non-interacting cosmic strings. The energy
density of such a network only scales with a via dilution, so ρ ∝ 1/a2.

Use the scaling of the energy density with,

ρ̇ = −3H(1 + ω)ρ ,

to find the effective equation of state, ω, for a string network. Briefly comment on the
horizon and flatness problems in this universe.
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(a) The continuity and Euler equations for matter perturbations are

δ′m = −∇ · vm + 3Φ′

v′

m = −Hvm −∇Φ .

Use these to show that

δ′′m +Hδ′m = ∇2Φ+ 3
(

Φ′′ +HΦ′
)

. (*)

(b) Now take the Friedmann equation for a flat universe containing matter and radiation,

H2 = H2 (Ωm +Ωr) a
2 .

and show it can be re-written it as

H2 =
H2

0Ω
2
m,0

Ωr,0

(

1

y
+

1

y2

)

,

where you should define y.

(c) Argue why during the radiation era the contribution from radiation to the gravitational
perturbation, Φ, can be neglected when considering matter on subhorizon scales.

(d) The argument in (c) allows us to replace the RHS of (*) with
3H2

0
Ω2

m,0

2Ωr,0

1
y δm. Use this,

with the result from part (b), to derive the Mészáros equation

d2δm
dy2

+
2 + 3y

2y(1 + y)

dδm
dy

− 3

2y(1 + y)
δm = 0 .

(e) The solutions of the Mészáros equation show that matter perturbations grow as δm ∝ a
during the matter era but only as δm ∝ ln(a) during the radiation era. Briefly describe
what effect this has on the matter power spectrum.
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(a) Use the first law of thermodynamics to show that the entropy in a comoving volume is
conserved for a gas of particles in kinetic equilibrium in an expanding universe (you may
assume that the chemical potential vanishes).

Show that the entropy density is given by,

s =
ρ+ P

T
.

[Hint: You are free to use the result ∂P
∂T = ρ+P

T . ]

(b) Consider a hot big bang universe at temperatures T ≫ 100 GeV consisting of the
Standard Model and, in addition, a relativistic ‘dark’ scalar field φ. For T > Td the
Standard Model particles and φ are in kinetic equilibrium, but for T < Td the field φ
is decoupled from the Standard Model. The field φ self-interacts through the processes
φφ ↔ φφ and φφ ↔ φφφ.

What is the chemical potential of φ? Find the ratio of the entropy densities before
decoupling,

ξ(T > Td) ≡
sSM
sφ

,

in terms of gSM⋆ and gφ⋆ . Explain how it evolves with time.

c) Some time after decoupling φ will become non-relativistic. The Bose-Einstein number
density is,

n =
g

2π2
T 3

∫

∞

0

dy
y2

e
√

y2+x2 − 1

where x = mφ/Tφ and y = p/T . For T ≪ mφ show that

sφ ≃
m3

φ

(2π)3/2
x−1/2e−x .

Use this result, with the expression for the entropy density for relativistic φ,

sφ =
2π2

45
gφ⋆S(Tφ)T

3
φ ,

to show that

Tγ

Tφ
≃ k

(

ξ

gSM⋆

)1/3

x5/6e−x/3 ,

where k is a numerical factor to be determined.

[ Hint: You may find the following integral useful:
∫

∞

0
dyype−y2 = 1

2
Γ
(

p+1

2

)

.]

d) Does the temperature of the φ particles decrease faster or slower than the photon
temperature? Can you provide a physical explanation for this behaviour?
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(a) The Friedmann equations for a flat universe are:

(

ȧ

a

)2

=
1

3M2
pl

ρ ,
ä

a
= − 1

6M2
pl

(ρ+ 3P ) .

For a universe containing a single scalar field, for which

ρ =
1

2
φ̇2 + V (φ) , P =

1

2
φ̇2 − V (φ) ,

derive the Klein-Gordon equation:

φ̈+ 3Hφ̇ = −V,φ

(b) The two slow-roll parameters are

ǫ ≡ −d lnH

d ln a
, η ≡ d ln ǫ

d ln a
.

Briefly describe what they parameterise and what is required for inflation to occur. Show
that they are equivalent to,

ǫ = − Ḣ

H2
, η =

ǫ̇

Hǫ
.

By making the slow-roll approximations, which you should state, derive the following:

H2 ≈ V

3M2
pl

, 3Hφ̇ ≈ −V,φ , ǫ ≈
M2

pl

2

(

V,φ

V

)2

(≡ ǫV ) , 2ǫ− 1

2
η ≈ M2

pl

V,φφ

V
(≡ ηV ) .

(c) Consider a class of inflationary models described by V = λφn where λ is a positive
constant, φ > 0, and n ∈ {2, 3, 4}. Show the slow roll conditions are only satisfied for

(

φ

Mpl

)2

> 2n

If we take the equality above as the end of inflation show that for 60 efolds we would need
to have started at a field position

(

φ

Mpl

)2

= 122n

and use ns = 1− 2ǫ− η and r = 16ǫ to show that this leads to

ns = 1− n+ 2

122
, r =

4n

61
(≈ 0.066n)

(d) For n ∈ {2, 3, 4} consider the viability of these models with respect to the current
constraints 0.956 < ns < 0.980 and r < 0.07.

(e) Are there any other obvious theoretical issues with these models?
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