MATHEMATICAL TRIPOS Part III

Friday, 2 June, 2017 $\,$ 9:00 am to 12:00 pm

PAPER 309

GENERAL RELATIVITY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(a) Let A be a diagonal square matrix $A = \text{diag}(a_1^2, a_2^2, \dots, a_{n+1}^2)$, where $a_i \neq 0$. Show, by constructing an atlas consisting of two charts, that the *n*-dimensional ellipsoid

$$\mathcal{Q}_n = \{\mathbf{x} \in \mathbb{R}^{n+1}, \mathbf{x}A\mathbf{x}^T = 1\}$$

is a smooth manifold.

- (b) Let $\psi : \mathcal{Q} \to N$ be a smooth map between smooth manifolds. Define the push forward $\psi_*(X)$ of a vector field X on \mathcal{Q} .
- (c) Let $(\rho > 0, \phi)$ be local coordinates on an open set $U \subset \mathcal{Q}$, where

$$Q = \{(x, y, z) \in \mathbb{R}^3, x^2 + a^2(y^2 + z^2) = 1\}, \text{ where } a \neq 0$$

such that $y + iz = \rho \exp(i\phi)$. Find the push-forward K of the vector field $\partial/\partial\phi$ from U to \mathbb{R}^3 , and construct the integral curves of K in \mathbb{R}^3

(d) For the surface \mathcal{Q} defined in (c), determine the metric g induced from the Euclidean metric $ds^2 = dx^2 + dy^2 + dz^2$ on \mathbb{R}^3 . Hence find a non-zero function Ω on U such that $\Omega^2 g$ is flat on U.

3

- $\mathbf{2}$
 - (a) Let $g = g_{\mu\nu} dx^{\mu} dx^{\nu}$ be a Lorentzian metric on a manifold M, and $u \to x^{\mu}(u)$ be a timelike curve. Show that the Euler-Lagrange equations with Lagrangians $L = \sqrt{-g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}}$, and $\mathcal{L} = (1/2)L^2$ share the same integral curves.
 - (b) Let $\phi : \mathbb{R}^3 \to \mathbb{R}$. Consider a family of Lorentzian metrics on $M = \mathbb{R}^3 \times \mathbb{R}$ parametrised by a non-zero constant c

$$g(c) = -c^2 e^{2\phi(x,y,z)/c^2} dt^2 + dx^2 + dy^2 + dz^2.$$

Compute the Christoffel symbols of the Levi–Civita connection $\nabla^{(c)}$ of g(c). Comment on the limit $c \to \infty$, and find the Christoffel symbols of the connection $\nabla^{(\infty)}$.

- (c) Find the Ricci tensor of $\nabla^{(\infty)}$, and show that it vanishes if and only if the function ϕ satisfies the Laplace equation on \mathbb{R}^3 .
- (d) Let **E** and **B** be vector fields on \mathbb{R}^3 . Show that the trajectories $\mathbf{x}(t)$ of a particle with equations of motion

$$\ddot{\mathbf{x}} = \mathbf{E} + 2\mathbf{B} \wedge \dot{\mathbf{x}}$$

are unparametrised geodesics of some torsion–free connection (which should be given in terms of its connection components) on $\mathbb{R}^3 \times \mathbb{R}$.

3

(a) Explain briefly how a vector field X can be used to define a 1-parameter group of diffeomorphisms ϕ_t .

4

(b) Let α be a *p*-form. Prove that the Lie derivative of α can be written

$$\mathcal{L}_X \alpha = i_X d\alpha + d(i_X \alpha)$$

where $i_X\beta$ denotes the operation of contracting the vector field X with the first index of a differential form β . [You may assume any results derived in lectures.]

(c) On \mathbb{R}^3 with coordinates (x, y, z), define two vector fields X, Y, a 1-form α and a 3-form μ :

$$X = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} + z\frac{\partial}{\partial z} \qquad Y = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$$
$$\alpha = ydx - xdy + zdz \qquad \mu = dx \wedge dy \wedge dz$$

(i) Calculate $\mathcal{L}_X \alpha$.

(ii) Let ϕ_t and ψ_t be the 1-parameter families of diffeomorphisms defined by X and Y respectively. Describe the actions of ϕ_t and ψ_t geometrically.

(iii) Calculate $(\phi_t)^*\mu$ and $(\psi_t)^*\alpha$. Hence calculate $\mathcal{L}_X\mu$ and $\mathcal{L}_Y\alpha$. Compare your results with those obtained using the formula in (b) above.

(d) A spacetime admits a Killing vector field V^a and contains a Maxwell field F such that $\mathcal{L}_V F = 0$. Consider the motion of a particle of charge q and rest mass m. Prove that locally there exists a scalar field Φ such that $i_V F = d\Phi$ and hence show that there is a conserved quantity along the particle's worldine. [The equation of motion of the particle is $u^b \nabla_b u^a = (q/m) F^a{}_b u^b$.]

4

A spacetime admits an orthonormal basis of 1-forms

$$e^{0} = dt$$
 $e^{1} = A dx$ $e^{2} = B dy$ $e^{3} = dz$

where A = A(t - z) and B = B(t - z) are non-zero smooth functions of t - z.

(a) Write down the corresponding Lorentzian metric in coordinates (t, x, y, z).

(b) The connection 1-forms are determined uniquely by $de^{\mu} = -\omega^{\mu}{}_{\nu} \wedge e^{\nu}$. Show that the non-zero connection 1-forms are

$$\omega_{01} = \alpha e^1 \qquad \omega_{13} = \beta e^1 \qquad \omega_{02} = \gamma e^2 \qquad \omega_{23} = \delta e^2$$

and those related by $\omega_{\mu\nu} = -\omega_{\nu\mu}$, where $\alpha, \beta, \gamma, \delta$ are functions that you should determine.

(c) Use the equation $\Theta^{\mu}{}_{\nu} = d\omega^{\mu}{}_{\nu} + \omega^{\mu}{}_{\rho} \wedge \omega^{\rho}{}_{\nu}$ to determine the curvature 2-forms.

(d) Show that the vacuum Einstein equation $R_{ab} = 0$ reduces to A''/A + B''/B = 0.

(e) Explain why such solutions can be interpreted as + polarized gravitational waves. [*Hint: linearize.*]

END OF PAPER