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(a) Let A be a diagonal square matrix A = diag(a1
2, a2

2, . . . , an+1
2), where ai 6= 0.

Show, by constructing an atlas consisting of two charts, that the n–dimensional
ellipsoid

Qn = {x ∈ R
n+1,xAxT = 1}

is a smooth manifold.

(b) Let ψ : Q → N be a smooth map between smooth manifolds. Define the push
forward ψ∗(X) of a vector field X on Q.

(c) Let (ρ > 0, φ) be local coordinates on an open set U ⊂ Q, where

Q = {(x, y, z) ∈ R
3, x2 + a2(y2 + z2) = 1}, where a 6= 0

such that y + iz = ρ exp(iφ). Find the push–forward K of the vector field ∂/∂φ
from U to R

3, and construct the integral curves of K in R
3

(d) For the surface Q defined in (c), determine the metric g induced from the Euclidean
metric ds2 = dx2 + dy2 + dz2 on R

3. Hence find a non–zero function Ω on U such
that Ω2g is flat on U .
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(a) Let g = gµνdx
µdxν be a Lorentzian metric on a manifold M , and u → xµ(u)

be a timelike curve. Show that the Euler–Lagrange equations with Lagrangians
L =

√

−gµν ẋµẋν , and L = (1/2)L2 share the same integral curves.

(b) Let φ : R
3 → R. Consider a family of Lorentzian metrics on M = R

3 × R

parametrised by a non–zero constant c

g(c) = −c2e2φ(x,y,z)/c
2

dt2 + dx2 + dy2 + dz2.

Compute the Christoffel symbols of the Levi–Civita connection ∇(c) of g(c). Com-
ment on the limit c→ ∞, and find the Christoffel symbols of the connection ∇(∞).

(c) Find the Ricci tensor of ∇(∞), and show that it vanishes if and only if the function
φ satisfies the Laplace equation on R

3.

(d) Let E and B be vector fields on R
3. Show that the trajectories x(t) of a particle

with equations of motion
ẍ = E+ 2B ∧ ẋ

are unparametrised geodesics of some torsion–free connection (which should be given
in terms of its connection components) on R

3 × R.
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(a) Explain briefly how a vector field X can be used to define a 1-parameter group of
diffeomorphisms φt.

(b) Let α be a p-form. Prove that the Lie derivative of α can be written

LXα = iXdα+ d(iXα)

where iXβ denotes the operation of contracting the vector field X with the first index of
a differential form β. [You may assume any results derived in lectures.]

(c) On R
3 with coordinates (x, y, z), define two vector fields X,Y , a 1-form α and a 3-form

µ:

X = −y
∂

∂x
+ x

∂

∂y
+ z

∂

∂z
Y = x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

α = ydx− xdy + zdz µ = dx ∧ dy ∧ dz

(i) Calculate LXα.

(ii) Let φt and ψt be the 1-parameter families of diffeomorphisms defined by X and Y
respectively. Describe the actions of φt and ψt geometrically.

(iii) Calculate (φt)
∗µ and (ψt)

∗α. Hence calculate LXµ and LY α. Compare your results
with those obtained using the formula in (b) above.

(d) A spacetime admits a Killing vector field V a and contains a Maxwell field F such that
LV F = 0. Consider the motion of a particle of charge q and rest mass m. Prove that
locally there exists a scalar field Φ such that iV F = dΦ and hence show that there is a
conserved quantity along the particle’s worldine. [The equation of motion of the particle

is ub∇bu
a = (q/m)F a

bu
b.]
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A spacetime admits an orthonormal basis of 1-forms

e0 = dt e1 = A dx e2 = B dy e3 = dz

where A = A(t− z) and B = B(t− z) are non-zero smooth functions of t− z.

(a) Write down the corresponding Lorentzian metric in coordinates (t, x, y, z).

(b) The connection 1-forms are determined uniquely by deµ = −ωµ
ν ∧ e

ν . Show that the
non-zero connection 1-forms are

ω01 = α e1 ω13 = β e1 ω02 = γ e2 ω23 = δ e2

and those related by ωµν = −ωνµ, where α, β, γ, δ are functions that you should determine.

(c) Use the equation Θµ
ν = dωµ

ν + ωµ
ρ ∧ ω

ρ
ν to determine the curvature 2-forms.

(d) Show that the vacuum Einstein equation Rab = 0 reduces to A′′/A+B′′/B = 0.

(e) Explain why such solutions can be interpreted as + polarized gravitational waves.
[Hint: linearize.]
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