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(a) Let A be a diagonal square matrix A = diag(a12,a2?,...,a,.12), where a; # 0.
Show, by constructing an atlas consisting of two charts, that the n—dimensional
ellipsoid

Q, = {x e R""! xAx” =1}
is a smooth manifold.

(b) Let ¢ : @ — N be a smooth map between smooth manifolds. Define the push
forward 1, (X) of a vector field X on Q.

(c) Let (p > 0,¢) be local coordinates on an open set U C Q, where
Q= {(z,y,2) € R* 2* + a*(y* + 2*) = 1}, where a#0

such that y + iz = pexp(i¢). Find the push—forward K of the vector field 9/9¢
from U to R3, and construct the integral curves of K in R3

(d) For the surface Q defined in (c), determine the metric g induced from the Euclidean
metric ds? = dx? + dy? + dz? on R3. Hence find a non-—zero function 2 on U such
that Q2¢ is flat on U.
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(a) Let g = guda*ds” be a Lorentzian metric on a manifold M, and u — z#(u)
be a timelike curve. Show that the Euler-Lagrange equations with Lagrangians
L =./—g,@"i", and £ = (1/2)L? share the same integral curves.

(b) Let ¢ : R®> — R. Consider a family of Lorentzian metrics on M = R3 x R
parametrised by a non—zero constant ¢

g(c) = — 2@y 2 | a2 4 dy* + d2*.

Compute the Christoffel symbols of the Levi-Civita connection V(©) of g(c). Com-
ment on the limit ¢ — oo, and find the Christoffel symbols of the connection V().

(c) Find the Ricci tensor of V(*), and show that it vanishes if and only if the function
¢ satisfies the Laplace equation on R3.

(d) Let E and B be vector fields on R3. Show that the trajectories x(¢) of a particle
with equations of motion
x=E+2BAx

are unparametrised geodesics of some torsion—free connection (which should be given
in terms of its connection components) on R x R.
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(a) Explain briefly how a vector field X can be used to define a 1-parameter group of
diffeomorphisms ¢;.

(b) Let a be a p-form. Prove that the Lie derivative of a can be written
Lxa =ixda+d(ixa)

where ix 3 denotes the operation of contracting the vector field X with the first index of
a differential form £. [You may assume any results derived in lectures.]

(c) On R3 with coordinates (z,y, z), define two vector fields X, Y, a 1-form « and a 3-form
%

0 0 0 0 0 0

X =—-y— — — Y =2— — —

y8x+x8y+282 x@x—i_y@y—i_'z@z

o = ydx — xdy + zdz pw=drANdyNdz
(i) Calculate Lxa.

(ii) Let ¢ and 1y be the 1-parameter families of diffeomorphisms defined by X and Y
respectively. Describe the actions of ¢; and v, geometrically.

(iii) Calculate (¢¢)*p and (10¢)*«. Hence calculate Lxp and Ly «a. Compare your results
with those obtained using the formula in (b) above.

(d) A spacetime admits a Killing vector field V* and contains a Maxwell field F' such that
Ly F = 0. Consider the motion of a particle of charge ¢ and rest mass m. Prove that
locally there exists a scalar field ® such that iy F' = d® and hence show that there is a
conserved quantity along the particle’s worldine. [The equation of motion of the particle

is ubVyu® = (q/m)F%ul.]
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A spacetime admits an orthonormal basis of 1-forms
eV = dt el = Ade e2=Bdy 3 =dz

where A = A(t — z) and B = B(t — z) are non-zero smooth functions of ¢t — z.
(a) Write down the corresponding Lorentzian metric in coordinates (¢, z,y, 2).

(b) The connection 1-forms are determined uniquely by de# = —w#,, A €. Show that the
non-zero connection 1-forms are

wol = ael w13 = Bel wog = fyez wo3 = 5 e?

and those related by w,, = —w,,, where o, 3,7, d are functions that you should determine.
(c) Use the equation ©#, = dw", + wH, A w”,, to determine the curvature 2-forms.
d) Show that the vacuum Einstein equation Rg, = 0 reduces to A”/A + B”/B = 0.

(
(e) Explain why such solutions can be interpreted as + polarized gravitational waves.
[Hint: linearize.]
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