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Consider the Landau free energy density for a magnetic system given by

A(h,m) = −hm+
1

2
A2m

2 +
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A4m

4 +
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A6m

6 ,

where h is the applied external magnetic field. Assume that A6 > 0 and that A2 and A4

depend on the system’s temperature T and another external quantity g.

(a) Given values for h, A2, A4, and A6, very briefly explain how can A be used to
determine the equilibrium expectation value of the system’s magnetization?

(b) Discuss the behaviour of A2 and A4 as the parameters T and g are varied across
a second order phase transition, a first order phase transition, and across a tricritical point.
Be sure to write down any significant relations between the coefficients of A at these points.

(c) Determine the critical exponents α, β, γ, and δ as a tricritical point is
approached. These exponents can be defined through

C ∼ |T − Tc|
−α , m ∼ (Tc − T )β , χ ∼ |T − Tc|

−γ , and m ∼ h1/δ ,

where C is the specific heat, m the magnetization, and χ the magnetic susceptibility.
[Hints: In the case of the β exponent, we assume T approaches Tc from below. In this
question it is sufficient to determine γ from only one side of the T → Tc limit.]

(d) Within the context of Landau theory argue that the Helmholtz free energy
density F may be expressed as

F =
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where Φ is a dimensionless function of 2 variables, with Φ(0, 0) finite and nonzero. You
should determine numerical values for the exponents u, v, w, x, y, and z.

(e) At a second order phase transition, what value for the critical exponent α would
you predict using the scaling form in Part (d)?

(f) Again using the results of Part (d), what value for α is predicted near a tricritical
point?
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(a) Consider the N -site, one-dimensional spin model, with periodic boundary
conditions, described by the Hamiltonian

H = −J
∑

〈ij〉

σiσj − L
∑

〈ij〉

σ2
i σ

2
j −D

∑

i

σ2
i −NK

where i, j ∈ {1, 2, 3, . . . , N}, each spin degree-of-freedom σi ∈ {−1, 0, 1}, and
∑

〈ij〉 denotes
a sum over nearest neighbour pairs.

Write down the transfer matrix W for the system. Defining

x = e
−
(

J+L+
D
2

)

y = e−2J

z = e−(J+L+D)

you should express W in terms of x, y, z, and K alone.

Denote and order the eigenvalues of the transfer matrix as follows λ1 > λ2 > λ3.
[Do not find explicit expressions for them.] Show how, in the large N limit, the eigenvalues
can be used to determine the system’s free energy and the magnetization 〈σi〉.

Carry out a renormalization group (RG) transformation, “decimating” the spins
on alternate sites, and determine the couplings x′, y′, and z′ of the theory on the coarse
lattice. [You do not need to explicitly write out an expression for K ′.]

(b) In this Part we consider a different theory to the one above. Let us consider an
unspecified two-dimensional spin system. The only pertinent information you need is that
there are couplings u and v, related to the couplings in the Hamiltonian similarly to how
x, y, and z are defined in Part (a). Under a real space RG transformation, the couplings
transform as (u, v) → (u′, v′) with

u′ =
4u2

(1 + u2)2
, v′ =

v4

(1 + u2)2
.

Find the fixed points in the domain 0 6 u 6 1, 0 6 v 6 ∞. [You may denote by u∗
the sole real root of the cubic u3 + u2 + 3u− 1, and you may use, without proof, the fact
that u∗ ≈ 0.3.]

Linearize the RG transformation about a generic fixed point (ũ, ṽ) and use this
expression to discuss the nature of any fixed points in the domain 0 < u < 1, 0 < v < ∞.
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Consider the Landau-Ginzburg Hamiltonian describing a real scalar field φ in D
spacial dimensions

H = H0 + V

with

H0[φ, h] =

∫

dDx

[

1

2
α−1(∇φ)2 +

1

2
r0 φ

2 − h(x)φ(x)

]

V [φ] =

∫

dDx
1

4!
u0 φ

4 .

Take as given that u0 > 0 and h(x) is a slowly varying function of x.

(a) Neglecting the interaction term V , carry out a renormalization group (RG)
transformation in Fourier space, eliminating the short wavelength modes with wavevectors
p in the range Λ/b < p 6 Λ, where Λ is the maximum wavevector before the transfor-
mation, and b > 1 is the scale factor associated with the RG transformation. For h = 0,
show that

α−1 → α−1 and r0 → b2r0

near the Gaussian fixed point. For constant h 6= 0 (uniform in space) determine how h
behaves under the RG transformation.

(b) Treating the interaction term V as a small perturbation, carry out the same
RG transformation as above to find how the couplings (r0, u0) behave near the Gaussian
fixed point. Discuss the nature of the Gaussian fixed point, paying attention to the
dimensionality D.

[Hints: You may denote the following ratio of functional integrals, involving a
functional O depending on the long and short wavelength modes, φ̃< and φ̃>, as an
expection value:

〈

O[φ̃<, φ̃>]
〉shell

0
≡

∫

Dφ̃>O[φ̃<, φ̃>] e
−H0[φ̃>]

∫

Dφ̃> e−H0[φ̃>]
.

It will be convenient to define a propagator for the short wavelength modes

〈φ>(x)φ>(y)〉
shell
0 = G>

0 (r) =

∫ Λ

Λ/b

dDp

(2π)D
αe−ip·x

p2 + αr0
.

You should justify the last equality. ]
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