MATHEMATICAL TRIPOS Part III

Monday, 5 June, 2017 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 301

QUANTUM FIELD THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) The Lagrangian density for Maxwell theory is

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu},$$

 $\mathbf{2}$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. Show that the theory is gauge invariant. Derive the equation of motion for A_{ν} . Show that, with the choice of Lorentz gauge $\partial_{\mu}A^{\mu} = 0$, the equation of motion reduces to

$$\partial_{\mu}\partial^{\mu}A_{\nu} = 0.$$

(b) Show that the equation of motion in Lorentz gauge follows from

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \left(\partial_{\mu} A^{\mu} \right)^2.$$

Compute the momenta π^{μ} conjugate to A_{μ} from this Lagrangian density.

(c) The mode expansions for A_{μ} and π^{μ} in the Schrödinger picture are given by

$$\begin{aligned} A_{\mu}(\vec{x}) &= \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2|\vec{p}|}} \sum_{\lambda=0}^{3} \epsilon_{\mu}^{\lambda}(\vec{p}) \left[a_{\vec{p}}^{\lambda} e^{i\vec{p}\cdot\vec{x}} + a_{\vec{p}}^{\lambda\dagger} e^{-i\vec{p}\cdot\vec{x}} \right] \\ \pi^{\mu}(\vec{x}) &= i \int \frac{d^{3}p}{(2\pi)^{3}} \sqrt{\frac{|\vec{p}|}{2}} \sum_{\lambda=0}^{3} (\epsilon^{\mu})^{\lambda}(\vec{p}) \left[a_{\vec{p}}^{\lambda} e^{i\vec{p}\cdot\vec{x}} - a_{\vec{p}}^{\lambda\dagger} e^{-i\vec{p}\cdot\vec{x}} \right] \end{aligned}$$

where ϵ^{λ}_{μ} are four 4-vectors satisfying $\epsilon^{\lambda} \cdot \epsilon^{\lambda'} = \eta^{\lambda\lambda'}$ and $\sum_{\lambda,\lambda'=0}^{3} (\epsilon_{\mu})^{\lambda} (\epsilon_{\nu})^{\lambda'} \eta^{\lambda\lambda'} = \eta_{\mu\nu}$, the Minkowski metric. The creation and annihilation operators satisfy the commutation relations

$$\left[a_{\vec{p}}^{\lambda}, \ a_{\vec{q}}^{\lambda'^{\dagger}}\right] = -\eta^{\lambda\lambda'} (2\pi)^3 \delta^3(\vec{p} - \vec{q}) \text{ and } \left[a_{\vec{p}}^{\lambda}, \ a_{\vec{q}}^{\lambda'}\right] = \left[a_{\vec{p}}^{\lambda^{\dagger}}, \ a_{\vec{q}}^{\lambda'^{\dagger}}\right] = 0.$$

Show that this implies canonical commutation relations for A_{μ} and π^{ν} .

(d) What is wrong with the Hilbert space spanned by the one particle states $a_{\vec{p}}^{\lambda^{\dagger}}|0\rangle$? Identify the states with longitudinal polarisation and those with transverse polarisation. Write down the Gupta-Bleuler condition. By decomposing the Fock space of some general state $|\Psi\rangle$, find the Gupta-Bleuler condition in terms of the $a_{\vec{p}}^{\lambda}$. Write a sentence that describes how this solves the problem with one particle states.

CAMBRIDGE

 $\mathbf{2}$

- (a) Write down the Clifford algebra in terms of Dirac matrices γ^{μ} .
- (b) The Dirac representation of γ^{μ} is (written in 2 by 2 block notation)

$$\tilde{\gamma}^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \tilde{\gamma}^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix},$$

3

where σ^i satisfy $\{\sigma^i, \sigma^j\} = 2\delta^{ij}$ and $[\sigma^i, \sigma^j] = 2i\epsilon^{ijk}\sigma^k$. Show explicitly that $\tilde{\gamma}^{\mu}$ satisfy the Clifford algebra.

(c) Find a similarity transform to take the gamma matrices to the chiral representation

$$\gamma^{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \gamma^{i} = \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix}$$

(d) A representation $M^{\mu\nu}$ of the Lorentz algebra, satisfies

$$[M^{\mu\nu}, M^{\rho\sigma}] = M^{\mu\sigma}\eta^{\nu\rho} - M^{\nu\sigma}\eta^{\rho\mu} + M^{\rho\mu}\eta^{\nu\sigma} - M^{\rho\nu}\eta^{\sigma\mu}.$$

Defining $S^{\mu\nu} = \frac{1}{4} [\gamma^{\mu}, \gamma^{\nu}]$, show the following: (i) $S^{\mu\nu} = A\gamma^{\mu}\gamma^{\nu} + B\eta^{\mu\nu}$, (ii) $[S^{\mu\nu}, \gamma^{\rho}] = C\gamma^{\mu}\eta^{\nu\rho} + D\gamma^{\nu}\eta^{\rho\mu}$, (iii) $[S^{\mu\nu}, \gamma^{\rho}\gamma^{\sigma}] = E\gamma^{\mu}\eta^{\nu\rho}\gamma^{\sigma} + F\gamma^{\nu}\eta^{\mu\rho}\gamma^{\sigma} + G\gamma^{\rho}\gamma^{\mu}\eta^{\nu\sigma} + H\gamma^{\rho}\gamma^{\nu}\eta^{\mu\sigma}$, determining the numbers A, B, C, D, E, F, G, H as you do so. (iv) Thus verify that $S^{\mu\nu}$ is a representation of the Lorentz algebra.

(e) A Lorentz transformation is defined by $\Lambda = \exp(\frac{1}{2}\Omega_{\rho\sigma}M^{\rho\sigma})$, where $M^{\rho\sigma}$ is in the vector representation. How does a Dirac spinor $\psi_{\alpha}(x)$ transform under this Lorentz transformation?

(f) Consider the rotations S^{jk} , where $j, k \in \{1, 2, 3\}$. Show that

$$S^{jk} \propto \epsilon^{jkl} \left(egin{array}{cc} \sigma^l & 0 \ 0 & \sigma^l \end{array}
ight),$$

finding the constant of proportionality.

(g) Using $\Omega_{ij} = -\epsilon_{ijk}\phi^k$ to describe a spatial rotation, show that $\psi(x) \to O\psi(\Lambda^{-1}x)$, where

$$O = \begin{pmatrix} \exp(\frac{i}{2}\vec{\phi}\cdot\vec{\sigma}) & 0\\ 0 & \exp(\frac{i}{2}\vec{\phi}\cdot\vec{\sigma}) \end{pmatrix}.$$

Considering a rotation of 2π around the z- axis, $\vec{\phi} = (0, 0, 2\pi)$, how does $\psi(x)$ transform? How does this compare to a vector representation of the Lorentz algebra?

UNIVERSITY OF

3

Consider classical field theories where the Lagrangian \mathcal{L} is a function of a real scalar field ϕ . Derive the Euler-Lagrange equation, stating any conditions.

Define a symmetry of a classical field theory of ϕ under the general transformation $\delta \phi = X(\phi)$ in terms of what happens to the Lagrangian density. State Noether's theorem and then prove it for a Lagrangian of the field ϕ . Find a conserved current j^{μ} .

Derive currents associated to space-time translations. What are these currents traditionally called?

Write down a Lagrangian density for a free, propagating field ϕ of mass m. Use the Euler-Lagrange equation to derive the Klein-Gordon equation. Write down expressions for the conserved quantities associated with space-time translation invariance in terms of $\dot{\phi}$, $\nabla \phi$ and ϕ , giving the interpretation of each conserved quantity.

A complex scalar field ψ has Lagrangian density

$$\mathcal{L} = \partial_{\mu}\psi^*\partial^{\mu}\psi - V(\psi^*\psi).$$

What internal symmetry does this theory possess? Write down the associated current and conserved charge, and give a potential physical example of what this charge could be.

UNIVERSITY OF

 $\mathbf{4}$

This question is about applications of the time ordering operator T.

(a) Given two operators $O_1(t_1)O_2(t_2)$ evaluated at different times t_1, t_2 define $T(O_1(t_1)O_2(t_2))$.

(b) Give the time dependent Schrödinger equation for a state $|\psi\rangle_I$, where subscript I refers to the interaction picture. Using a unitary time evolution operator $U(t, t_0)$, suggest a trial solution for $|\psi(t)\rangle_I$ and find a condition on U from the Schrödinger equation.

Quote Dyson's formula for U, and then show that U satisfies the condition you found above.

(c) A real scalar field has an expansion in terms of annihilation/creation operators $a_{\vec{p}}$ and $a_{\vec{p}}^{\dagger}$

$$\phi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vec{p}}}} \left(a_{\vec{p}} \ e^{-ip \cdot x} + a_{\vec{p}}^{\dagger} \ e^{ip \cdot x} \right).$$

What is the value of the commutator $[a_{\vec{p}}, a_{\vec{q}}^{\dagger}]$? Define the Feynman propagator $\Delta_F(x-y)$ in terms of $\phi(x)$ and $\phi(y)$. Show that

$$\Delta_F(x-y) = \int \frac{d^4p}{(2\pi)^4} \frac{i}{p^2 - m^2} e^{-ip \cdot (x-y)},$$

where you should specify how the poles in the integrand are dealt with.

END OF PAPER