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1

Let X be a centred Gaussian random vector in Rn, n ∈ N. For x, y ∈ Rn,
denote the Euclidean inner product by 〈x, y〉 =

∑n
i=1 xiyi and the maximum norm by

‖x‖∞ = maxi6n |xi|. Suppose f : Rn → R is a continuously differentiable map with
gradient ∇f(x) satisfying supx∈Rn ‖∇f(x)‖∞ < ∞. Show carefully that for all λ > 0

E
[

eλ|f(X)−Ef(X)|
]

6 E
[

e
λπ

2
|〈∇f(X),Y 〉|

]

where Y is an i.i.d. copy of X.

Now suppose there exists a standard normal random variable Z defined on the same
probability space as X,Y , such that |〈∇f(X), Y 〉| 6 |Z| holds almost surely. Show that

Pr(|f(X)− Ef(X)| > u) 6 2e−
2

π2
u2

for all u > 0.

2

Let X = (X(t) : t ∈ T ), T = R, be a centred Gaussian process with covariance
Φ(s, t) = K(s− t), s, t ∈ T, where K : R → R is a positive definite, integrable and three-
times differentiable function. Show that X has a version X̃ such that the map t 7→ X̃(t)
is almost surely path-wise differentiable on the interval (0, 1).

[Hint: You may use results from lectures, such as Dudley’s theorem on sample-
continuity of Gaussian processes, provided they are clearly stated. You may also use the
facts that a positive definite function is the Fourier transform of a non-negative function,
and that any such function prescribes a proper covariance of a Gaussian process.]
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Let X be a centred Gaussian random variable X taking values in a separable Banach
space B. Define the reproducing kernel Hilbert space (RKHS) H of X. State (without
proof) the Cameron-Martin theorem on absolute continuity of laws of shifted Gaussian
random variables on B.

Let C be a Borel subset of B that is symmetric about the origin. Show that for
every h ∈ H with RKHS-norm ‖h‖H , we have

Pr(X − h ∈ C) > e−‖h‖2
H
/2 Pr(X ∈ C).

Now assume that H is dense in B for the ‖ · ‖B-topology and that Pr(‖X‖B 6 t) > 0 for
all t > 0. Show that the map

t 7→ Φ(t) = Pr(‖X‖B 6 t), t ∈ (0,∞),

is strictly increasing in t.

4

State (without proof) Slepian’s comparison lemma for two centred normal random
vectors in Rn.

Let (XH(t) : t ∈ [0, 1]), (YH′ (t) : t ∈ [0, 1]) be fractional Brownian motions with
Hurst parameters H > H ′, respectively. Define T = [0, 1] ∩ Q, where Q denotes the
rational numbers. Show that

E sup
t∈T

|XH(t)| 6 4E sup
t∈T

|YH′(t)|.

[Recall that a fractional Brownian motion with Hurst parameter H ∈ (0, 1) is a
Gaussian processes indexed by T = [0, 1] whose covariance is given by

Φ(s, t) = s2H + t2H − |s− t|2H , s, t ∈ T.

You may use without proof the fact that sample-continuous versions of fractional Brownian
motion exist.]
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