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A biologist models the partition of N animals into 4 classes in terms of a single
parameter θ ∈ [0, 1] as follows

(Y1, Y2, Y3, Y4) ∼ Multinomial
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We put a uniform prior distribution on θ, and observe a partition y = (y1, y2, y3, y4).

(a) Construct a Gibbs sampler for the posterior distribution of θ with a data
augmentation Z | y, θ ∼ Binomial(y1 ; θ/(2 + θ)), explaining how to sample each step.

(b) Define adaptive rejection sampling, and justify why this algorithm can be applied
to draw i.i.d. samples from the posterior distribution of θ.

(c) Define an algorithm which takes as input a Uniform(0, 1) random variable U ,
and i.i.d. Gamma(1, 1) random variables G1, . . . , GN , which are independent of U , and
outputs an exact sample of the posterior distribution of θ.

2

We are given a Phylogenetic tree, a binary tree in which the leaves represent n
animal species and the internal nodes represent ancestors of those species. Every node
v is associated to a random variable Xv taking values in {A,G,T,C}k, where each
entry represents a DNA base present in a specific site of the genome. We define an
evolutionary model parametrised by a Markov kernel K in the space {A,G,T,C}. The
distribution of {Xv; v a node in the tree} satisfies the global Markov property on the tree.
The conditional distribution of Xv given its parent Xp(v) on the tree is

µ(Xv | Xp(v)) =

k
∏

i=1

K(Xp(v)(i),Xv(i)).

The distribution of Xv0 for the root node v0 is uniform on {A,G,T,C}k.

Suppose we observe the value of Xv for every leaf v of the tree. Derive the
Expectation Maximisation update for the maximum likelihood estimate of K. If any
quantity cannot be derived analytically, specify an algorithm to compute it, and justify
your choice.
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Let Yi be the number of failures observed in water pumps at nuclear plant i during
a time period of length ti. Consider the hierarchical model

Yi | θi ∼ Poisson(tiθi) independent for i = 1, . . . , n,

θi | b ∼ Gamma(a, b) independent for i = 1, . . . , n,

b ∼ Gamma(c, 1).

(a) Derive a Gibbs sampler for the posterior distribution of (θ1, . . . , θn, b).

(b) Prove that the Markov chain on the parameter θ = (θ1, . . . , θn) defined by the
Gibbs sampler satisfies the drift condition for geometric ergodicity with the Lyapunov
function V (θ) = 1 + (

∑n
i=1 θi)

2.

[Hint: A Gamma(a, b) distribution has probability density function

f(x) =
xa−1 exp(−bx)ba

Γ(a)

for x ∈ [0,∞), mean a/b, and variance a/b2. A Poisson(λ) distribution has probability
mass function

p(x) =
λxe−λ

x!

for x ∈ {0, 1, 2, . . . }.]
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(a) Define the mean-field variational inference problem for the posterior distribution
µ(· | y) of a vector of parameters X = (X1, . . . ,Xp) with observables y. Provide an
expression for the optimal mean-field marginal distribution of X1 as a function of fixed
marginal distributions for X2, . . . ,Xk, and prove that it is optimal.

(b) Let (X(t))t>0 be a µ(· | y)-reversible Markov chain with kernel K, and let Ktν
be the law of X(t) if X(0) ∼ ν. Define a variational approximation

q∗t = arg min
q∈Qt

KL(q ‖µ(· | y)), (1)

in the family Qt = {q ; q = Ktν, ν(x) =
∏p

i=1 νi(xi), νi ∈ Q̃}, where KL(· ‖ ·) denotes the
Kullback–Leibler divergence and Q̃ is some parametric family of distributions. Prove that
q∗t is not necessarily equal to Ktq∗0 by constructing a counterexample.

(c) Let (Z(t))t>1 be i.i.d. Uniform(0, 1) random variables, and given a random
variable X(0), define a Markov chain (X(t))t>0 using the recursion X(t) = f(X(t−1), Z(t)),
for t > 1, where f is a deterministic function. Let K be the kernel of this Markov chain,
and consider the variational problem in Eq. 1, letting Q̃ be the set of univariate normal
distributions. Assume that f(x, z) and the logarithmic posterior density log µ(x | y) are
everywhere differentiable with respect to the parameter x, for every z and every y, and the
gradients can be computed easily. Suggest an algorithm to solve this variational problem
and justify your choice.
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A Gaussian process classification model with binary outcomes (Yi)16i6n is defined
by Pr(Yi = 1) = Φ(f(xi)), where Φ is the CDF of a N(0, 1) distribution and the function
f : Rm → R has a Gaussian process prior distribution with mean 0 and covariance function,

K(z1, z2) = σ2 exp

[

−
1

2
(z1 − z2)

⊤A(z1 − z2)

]

, for z1, z2 ∈ R
m.

The parameter σ2 is the variance of the marginal prior distribution of f(x) at any value
of x. The parameter A is a diagonal matrix with Aii = τ−1

i , and defines the covariance
between values of f at different points. The prior distribution makes σ−2, τ1, . . . , τm i.i.d.
Gamma(1, 1).

(a) Suppose you implement a Gibbs sampler for the posterior distribution which
alternates sampling the full conditionals of 3 blocks of variables: (f(x1), . . . , f(xn)), σ

−2,
and (τ1, . . . , τm), and you observe that it takes a long time to converge to the stationary
distribution. Provide a plausible explanation for this.

(b) A Metropolis–Hastings algorithm targeting the marginal posterior of σ2, τ1, . . . , τm
given y1, . . . , yn might be more efficient. However, it is not possible to compute the
marginal likelihood µ(y | σ2, τ). Instead, you decide to implement a pseudo-marginal
Metropolis–Hastings algorithm. Define this algorithm with a given proposal kernel q and
explain how to implement it using importance sampling.
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A probability density function µ : Rd → R
+ is not everywhere differentiable, so it

is not possible to simulate it through Hamiltonian Monte Carlo. We define a smoothed
version, ν, through

log ν(x) = C +min
y

[

log µ(y) + λ‖x− y‖22
]

where C is a constant not depending on x, and λ > 0. The density ν is differentiable
everywhere and there is an efficient algorithm to compute its gradient. Consider a
Hamiltonian dynamics with positions x, momenta p, and Hamiltonian

H(x, p) = − log ν(x) +
p⊤p

2
.

Let Tε,L be the function that maps an initial condition to the output of L steps of leapfrog
integration for this Hamiltonian dynamics with step size ε. Now, consider the Markov
chain which iterates the following steps for n = 1, 3, 5, . . . : Given (Xn, Pn), first draw
Pn+1 ∼ N(0, I), and set Xn+1 = Xn. Then, define (X ′,−P ′) = Tε,L(Xn+1, Pn+1) and
set Xn+2 = X ′ and Pn+2 = P ′ with probability α(Xn+1, Pn+1,X

′, P ′). Otherwise, set
Xn+2 = Xn+1 and Pn+2 = Pn+1.

Define an acceptance probability α(Xn+1, Pn+1,X
′, P ′) which ensures that this

Markov chain has stationary distribution µ, and prove that µ is the stationary distribution.
You may cite the fact that leapfrog integration is reversible and volume preserving.
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