

MATHEMATICAL TRIPOS Part III

Wednesday, 7 June, 2017 1:30 pm to 3:30 pm

PAPER 215

MIXING TIMES OF MARKOV CHAINS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) Define the *total variation distance* $\|\mu - \nu\|_{tv}$ for probability distributions μ, ν on a finite set S. Show that if P is the transition matrix of an irreducible, aperiodic Markov chain on a state space S with invariant distribution π , and if $d(t) = \sup_x \|P^t(x, \cdot) - \pi(\cdot)\|_{tv}$ then $d(t) \leq \bar{d}(t)$ where $\bar{d}(t) = \sup_{x,y} \|P^t(x, \cdot) - P^t(y, \cdot)\|_{tv}$.

(b) Define what is meant by a *coupling* of μ and $\nu,$ and show that if (X,Y) is such a coupling then

$$\|\mu - \nu\|_{\mathrm{tv}} \leqslant \mathbb{P}(X \neq Y).$$

(c) Consider two disjoint complete graphs K_n and K'_n on the vertices $\{v_1, \ldots, v_n\}$ and $\{v'_1, \ldots, v'_n\}$ respectively. Let G_n be the graph that results from adding to K_n and K'_n a single vertex w as well as an edge from v_1 to w and another from v'_1 to w. Let Xdenote simple random walk on G_n , and let τ be the first hitting time of w. Show that if $1 \leq i \leq n$,

$$\|P^t(v_i, \cdot) - P^t(v'_i, \cdot)\|_{\mathrm{tv}} \leq \mathbb{P}_{v_i}(\tau > t).$$

Show that $\mathbb{E}(\tau) \leq n(n-1)$, and deduce that $t_{\text{mix}} = O(n^2)$, where t_{mix} denotes the mixing time of X. [*Hint:* for $1 \leq i \leq n$, call the vertices v_i and v'_i related. If two random walks start from unrelated vertices in K_n and K'_n respectively, you can start by showing briefly that they can be moved to related vertices in the next step with probability 1 - O(1/n).]

UNIVERSITY OF

 $\mathbf{2}$

(a) Define the notion of mixing time $t_{\min}(\alpha)$ at level $\alpha \in (0,1)$ of an irreducible, aperiodic Markov chain on a finite set S and explain what is meant by the cutoff phenomenon.

(b) Let $(X_t, t = 0, 1, ...)$ be an irreducible, aperiodic and reversible Markov chain on a finite state space S with invariant distribution $\pi(y), y \in S$. Show that if $P^t(x, y)$ denote the t-step transition probabilities of the chain,

$$\frac{P^t(x,y)}{\pi(y)} = \sum_{j=1}^n \lambda_j^t f_j(x) f_j(y)$$

where λ_j are the eigenvalues of the transition matrix P and f_j are functions which you should specify. [You can assume without proof that there exists an orthonormal basis of eigenfunctions for a suitable inner product].

(c) In the setup of (b), give the definition of the *absolute spectral gap* γ_* of the chain, as well as that of the *relaxation time* t_{rel} , and show that

$$(t_{\mathrm{rel}}-1)\log\left(rac{1}{2\varepsilon}
ight)\leqslant t_{\mathrm{mix}}(\varepsilon).$$

(You may use without proof the inequality $-(1-x)\log(1-x) \leq x$, valid for all $x \in [0,1)$.)

(d) Suppose that $\{X^n\}_{n\geq 1} = \{(X_n(t), t = 0, 1, ...)\}_{n\geq 1}$ is a family of Markov chains satisfying the cutoff phenomenon. Denote by $\gamma = \gamma_n$, $t_{\min} = t_{\min}^n$ the spectral gap and the mixing time at level (1/4) of X^n respectively, and suppose that $t_{\min} \to \infty$. Then show that $\gamma t_{\min} \to \infty$ as $n \to \infty$. (This is called Peres' product condition.)

Show furthermore by considering the case of the complete graph K_n on n vertices that the condition " $t_{\text{mix}} \to \infty$ " above cannot be removed to obtain the same conclusion.

UNIVERSITY OF

3

(a) Consider an irreducible, aperiodic and reversible Markov chain on a state S, and let π be the equilibrium distribution. Explain what is meant by a *Poincaré inequality* with constant C > 0. State a formula (no proof required) expressing the spectral gap γ as the solution of a variational problem. How is this related to Poincaré inequalities?

4

(b) State and prove a theorem demonstrating the use of the *canonical paths method* to obtain a Poincaré inequality.

(c) Consider the hypercube $H_n = \{-1, +1\}^n$ and let $(X_t, t = 0, 1, ...)$ denote a lazy random walk on H_n . Hence at each time step t = 0, 1, ..., a coordinate $1 \le i \le n$ is chosen uniformly at random, and the *i*th coordinate of X_t is flipped with probability 1/2.

Use the canonical paths method to establish a Poincaré inequality with constant $C = 2n^2$. [*Hint*: change bits one at a time]. Hence deduce that the spectral gap γ satisfies $\gamma \ge 1/(2n^2)$.

(d) Compute the eigenvalues of this chain exactly. How sharp is the estimate obtained in (c)? [*Hint:* for $J \subset \{1, \ldots, n\}$, set $f_J(x) = \prod_{i \in J} x_i$ if $x = (x_1, \ldots, x_n) \in H_n$.]

$\mathbf{4}$

(a) Let P be the transition matrix of an irreducible, aperiodic and reversible Markov chain on a finite state space S of size n with invariant distribution $(\pi(x))_{x\in S}$, with eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$. Define the *Dirichlet form* $\mathcal{E}(f, f)$ associated to P, and give without proof an equivalent expression. State and prove the variational characterisation of the spectral gap in terms of $\mathcal{E}(f, f)$.

(b) Consider the Markov chain of "random adjacent transpositions" on the permutation group S_n of order n. This is the Markov chain defined by $P(x,y) = p(x^{-1}y)$ and p(s) = 1/n if s is the identity, or s = (i, i + 1) for $1 \le i \le n - 1$, and p(s) = 0 otherwise. (Here, the notation (i, j) refers to the transposition of i and j.) By considering the function $f: S_n \to \mathbb{R}$ defined by $f(\sigma) = \sigma^{-1}(i)$, show that as $n \to \infty$,

$$\gamma \leqslant \frac{6}{n^3}(1+o(1)).$$

[You can use without proof that if U is a uniform random variable on (0, 1) then Var (U) = 1/6, and that if $U_n \in [0, 1]$ converges to U in distribution, then $\operatorname{var}(U_n) \to 1/6$].

(c) Stating carefully any theorem you use, show conversely that

$$\gamma \ge 1/(2n^3).$$

[You can use without proof that for the "random transpositions" walk on S_n , the corresponding spectral gap $\tilde{\gamma}$ is equal to $\tilde{\gamma} = 2/n$. We recall that random transpositions are defined by setting the kernel \tilde{p} to be: $\tilde{p}(s) = 1/n$ when s is the identity; $\tilde{p}(s) = 1/\binom{n}{2}$ for any transposition s; and $\tilde{p}(s) = 0$ otherwise.]

5

END OF PAPER

Part III, Paper 215