
MATHEMATICAL TRIPOS Part III

Wednesday, 7 June, 2017 1:30 pm to 3:30 pm

PAPER 215

MIXING TIMES OF MARKOV CHAINS

Attempt no more than THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Cover sheet None

Treasury Tag

Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1

(a) Define the total variation distance ‖µ−ν‖tv for probability distributions µ, ν on
a finite set S. Show that if P is the transition matrix of an irreducible, aperiodic Markov
chain on a state space S with invariant distribution π, and if d(t) = supx ‖P

t(x, ·)−π(·)‖tv
then d(t) 6 d̄(t) where d̄(t) = supx,y ‖P

t(x, ·) − P t(y, ·)‖tv .

(b) Define what is meant by a coupling of µ and ν, and show that if (X,Y ) is such
a coupling then

‖µ − ν‖tv 6 P(X 6= Y ).

(c) Consider two disjoint complete graphs Kn and K ′

n on the vertices {v1, . . . , vn}
and {v′

1
, . . . , v′n} respectively. Let Gn be the graph that results from adding to Kn and

K ′

n a single vertex w as well as an edge from v1 to w and another from v′
1
to w. Let X

denote simple random walk on Gn, and let τ be the first hitting time of w. Show that if
1 6 i 6 n,

‖P t(vi, ·) − P t(v′i, ·)‖tv 6 Pvi(τ > t).

Show that E(τ) 6 n(n− 1), and deduce that tmix = O(n2), where tmix denotes the mixing
time of X. [Hint: for 1 6 i 6 n, call the vertices vi and v′i related. If two random walks
start from unrelated vertices in Kn and K ′

n respectively, you can start by showing briefly
that they can be moved to related vertices in the next step with probability 1−O(1/n).]
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(a) Define the notion of mixing time tmix(α) at level α ∈ (0, 1) of an irreducible,
aperiodic Markov chain on a finite set S and explain what is meant by the cutoff
phenomenon.

(b) Let (Xt, t = 0, 1, . . .) be an irreducible, aperiodic and reversible Markov chain
on a finite state space S with invariant distribution π(y), y ∈ S. Show that if P t(x, y)
denote the t-step transition probabilities of the chain,

P t(x, y)

π(y)
=

n
∑

j=1

λt
jfj(x)fj(y)

where λj are the eigenvalues of the transition matrix P and fj are functions which you
should specify. [You can assume without proof that there exists an orthonormal basis of
eigenfunctions for a suitable inner product].

(c) In the setup of (b), give the definition of the absolute spectral gap γ∗ of the chain,
as well as that of the relaxation time trel, and show that

(trel−1) log

(

1

2ε

)

6 tmix(ε).

(You may use without proof the inequality −(1−x) log(1−x) 6 x, valid for all x ∈ [0, 1).)

(d) Suppose that {Xn}n>1 = {(Xn(t), t = 0, 1, . . .)}n>1 is a family of Markov chains
satisfying the cutoff phenomenon. Denote by γ = γn, tmix = tn

mix
the spectral gap and the

mixing time at level (1/4) of Xn respectively, and suppose that tmix → ∞. Then show
that γ tmix → ∞ as n → ∞. (This is called Peres’ product condition.)

Show furthermore by considering the case of the complete graph Kn on n vertices
that the condition “tmix → ∞” above cannot be removed to obtain the same conclusion.
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(a) Consider an irreducible, aperiodic and reversible Markov chain on a state S,
and let π be the equilibrium distribution. Explain what is meant by a Poincaré inequality

with constant C > 0. State a formula (no proof required) expressing the spectral gap γ
as the solution of a variational problem. How is this related to Poincaré inequalities?

(b) State and prove a theorem demonstrating the use of the canonical paths method

to obtain a Poincaré inequality.

(c) Consider the hypercube Hn = {−1,+1}n and let (Xt, t = 0, 1, . . .) denote a lazy
random walk on Hn. Hence at each time step t = 0, 1, . . ., a coordinate 1 6 i 6 n is chosen
uniformly at random, and the ith coordinate of Xt is flipped with probability 1/2.

Use the canonical paths method to establish a Poincaré inequality with constant
C = 2n2. [Hint : change bits one at a time]. Hence deduce that the spectral gap γ satisfies
γ > 1/(2n2).

(d) Compute the eigenvalues of this chain exactly. How sharp is the estimate
obtained in (c)? [Hint: for J ⊂ {1, . . . , n}, set fJ(x) =

∏

j∈J xj if x = (x1, . . . , xn) ∈ Hn.]

4

(a) Let P be the transition matrix of an irreducible, aperiodic and reversible Markov
chain on a finite state space S of size n with invariant distribution (π(x))x∈S , with
eigenvalues λ1 > . . . > λn. Define the Dirichlet form E(f, f) associated to P , and give
without proof an equivalent expression. State and prove the variational characterisation

of the spectral gap in terms of E(f, f).

(b) Consider the Markov chain of “random adjacent transpositions” on the permu-
tation group Sn of order n. This is the Markov chain defined by P (x, y) = p(x−1y) and
p(s) = 1/n if s is the identity, or s = (i, i + 1) for 1 6 i 6 n − 1, and p(s) = 0 other-
wise. (Here, the notation (i, j) refers to the transposition of i and j.) By considering the
function f : Sn → R defined by f(σ) = σ−1(i), show that as n → ∞,

γ 6
6

n3
(1 + o(1)).

[You can use without proof that if U is a uniform random variable on (0, 1) then
Var (U) = 1/6, and that if Un ∈ [0, 1] converges to U in distribution, then var(Un) → 1/6].

(c) Stating carefully any theorem you use, show conversely that

γ > 1/(2n3).

[You can use without proof that for the “random transpositions” walk on Sn, the
corresponding spectral gap γ̃ is equal to γ̃ = 2/n. We recall that random transpositions
are defined by setting the kernel p̃ to be: p̃(s) = 1/n when s is the identity; p̃(s) = 1/

(

n
2

)

for any transposition s; and p̃(s) = 0 otherwise.]
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