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(a) Let (xn)n>0 be a real sequence satisfying xn+m 6 xn + xm for all n,m > 1.
Prove that the limit of xn/n as n→∞ exists and satisfies

lim
n→∞

xn
n

= inf
k

{xk
k

}

.

(b) Consider bond percolation on Z
2 with parameter p ∈ (0, 1). For all k > 1 define

the tube
Tk = {(x1, x2) ∈ Z

2 : |x2| 6 k}.

(i) Prove that for all k > 1 the limit

fk(p) = lim
n→∞

(

−
1

n
log Pp((0, 0)←→ (n, 0) in Tk)

)

.

exists and satisfies for all n and k

Pp((0, 0)←→ (n, 0) in Tk) 6 e−nfk(p).

(ii) Prove that the sequence (fk(p))k has a limit as k →∞.

(iii) Prove that fk(p) > 0 for all k > 1.
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(a) Define bond percolation on Z
d and the critical probability pc(d).

(b) Prove that pc(2) = 1/2 and θ(1/2) = 0.

(You can assume exponential decay in the subcritical regime and the uniqueness of
the infinite cluster in the supercritical case.)
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Let G = (V,E) be a finite connected unweighted graph on n vertices. Let a and z
be two distinguished vertices.

(a) Let T be a uniform spanning tree. By considering a suitable unit flow, prove
that for all edges e ∈ E,

P(e ∈ T ) = Reff(e),

where Reff(e) is the effective resistance between the endpoints of e.

(You do not need to prove that your flow satisfies Kirchhoff’s laws.)

Deduce Foster’s theorem:

∑

e∈E

Reff(e) = n− 1.

(b) Suppose a random walk X on G starts from a. Let τ be the first time it returns
to a after having first visited z. Let S(x, y) be the number of times up to time τ that the
walk traverses the edge e = (x, y) in the direction from x to y. Prove that

E[S(x, y)] = Reff(a, z).

(You can use results from the course provided you state them clearly.)

(c) Finally prove that

E

[

τ−1
∑

k=0

Reff(Xk,Xk+1)

]

= 2(n − 1)Reff (a, z).
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Let G be a finite connected graph.

(a) Define the term uniform spanning tree of G.

(b) Describe Wilson’s algorithm for generating a uniform spanning tree of G.

Explain the meaning of the term “uniform spanning tree of an infinite recurrent
graph”.

(c) We define a loop erased random walk from x to y in G to have the law of a
simple random walk started at x until it first hits y deleting the loops as we encounter
them.

Show that the set of edges a loop erased random walk from x to y crosses has the
same distribution as the set of edges crossed by a loop erased random walk from y to x.
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