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Let X1,X2, . . . ,Xn (n > 2) be independent and identically distributed random
variables with density function f .

Define the univariate kernel density estimator f̂h, with kernel K and bandwidth h.
Show that

E{f̂h(x)} = (Kh ∗ f)(x),
where (g ∗ f) denotes the convolution between g and f , and Kh is a function which you
should specify.

Let the kernel be K(z) = 1{|z|61/2}. Suppose that f is twice differentiable with
bounded second derivative. Show that, for all n > 2, h > 0 and x ∈ R,

∣

∣E{f̂h(x)} − f(x)
∣

∣ 6
h2

24
sup
z∈R

|f ′′(z)|.

Show that, for t > 0,

P

[

∣

∣f̂h(x)− E{f̂h(x)}
∣

∣ > t
]

6 2 exp
(

−2nh2t2
)

.

By integrating this bound, deduce that, for all n > 2, h > 0 and x ∈ R, we have

Var{f̂h(x)} 6
1 + log 2

2nh2
.
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Let (X,Y ) be a random pair taking values in R
d×{0, 1}. Let η(x) := P(Y = 1|X =

x), and let PX denote the marginal distribution of X. Define the Bayes classifier CBayes

and find its risk P{CBayes(X) 6= Y }.
Now let (X1, U1), . . . , (Xn, Un) be independent pairs, with Xi ∼ PX , Ui ∼ U [0, 1],

with Xi and Ui independent, for i = 1, . . . , n. Let Yi := 1{Ui6η(Xi)}. Show that the pair
(X1, Y1) has the same joint distribution as (X,Y ).

For k ∈ {1, . . . , n}, define the k-nearest neighbour classifier, denoted by Ĉknn
n , with

training data (X1, Y1), . . . , (Xn, Yn).

Consider the case k = 1. Given x ∈ R
d, let Y ′

i = Y ′
i (x) := 1{Ui6η(x)}, and let

(X(1)(x), U(1)(x)), . . . , (X(n)(x), U(n)(x)) denote a reordering of the pairs (X1, U1), . . . , (Xn, Un),
such that

‖X(1)(x)− x‖ 6 ‖X(2)(x)− x‖ 6 . . . 6 ‖X(n)(x)− x‖.

Let C̃1nn
n denote the 1-nearest neighbour classifier trained with the pairs (X1, Y

′
1), . . . , (Xn, Y

′
n).

Show that, for each x ∈ R
d,

P{C̃1nn
n (x) 6= Ĉ1nn

n (x)} = E{|η(X(1)(x)) − η(x)|}.

Write
L(C) := P

{

C(X) 6= Y |(X1, Y1, U1), . . . , (Xn, Yn, Un)
}

.

Deduce that

lim
n→∞

E{L(Ĉ1nn
n )} = lim

n→∞
E{L(C̃1nn

n )} = E[2η(X){1 − η(X)}].

[You may use the fact that E{|η(X(1)(X))− η(X)|} → 0 as n → ∞ without proof.]

Deduce further that

P{CBayes(X) 6= Y } 6 lim
n→∞

E{L(Ĉ1nn
n )} 6 2P{CBayes(X) 6= Y }.
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Let P,Q be two probability measures on a measurable space (X ,A), and let ν be a
σ−finite measure on (X ,A). Suppose that P and Q are mutually absolutely continuous
with respect to ν, and dominated by ν. Define the Kullback–Leibler KL(P,Q), Total
Variation TV (P,Q) and Hellinger h(P,Q) distances between P and Q. Show that

TV (P,Q) 6 h(P,Q) 6
√

KL(P,Q).

[Hint: You may use the fact that log(1 + x) 6 x for x > −1 without proof.]

State and prove Le Cam’s two points lemma.

Let X1, . . . ,Xn be an independent and identically distributed sample from N(µ, σ2)
where σ is a known constant. Show that there exists c > 0 such that

sup
µ∈R

E|µ̃− µ| > c√
n
,

for any estimator µ̃.
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Consider a fixed design homoscedastic regression model

Yi = m(xi) + σǫi, for i = 1, 2, . . . , n,

where a < x1 < . . . < xn < b and ǫi are independent and identically distributed with
E(ǫi) = 0 and Var(ǫi) = 1.

Define a cubic spline on [a, b] with knots at x1, . . . , xn. When is a cubic spline a
natural cubic spline? Define the natural cubic spline interpolant to g = (g1, . . . , gn)

T at
x1, . . . , xn.

Let g denote the natural cubic spline interpolant to g = (g1, . . . , gn)
T at x1, . . . , xn.

Show that for any twice continuously differentiable function g̃ on [a, b] satisfying g̃(xi) = gi,
for i = 1, . . . , n, we have

∫ b

a
g′′(x)2 dx 6

∫ b

a
g̃′′(x)2 dx,

with equality if and only if g̃ = g.

Deduce that, for each λ ∈ (0,∞), there exists a unique minimiser ĝλ, which you
should specify, of

Sλ(g̃) :=
n
∑

i=1

{Yi − g̃(xi)}2 + λ

∫ b

a
g̃′′(x)2 dx

over g̃ ∈ S2[a, b], the set of twice continuously differentiable functions on [a, b].

[In this question you may use the fact that the natural cubic spline interpolant to
(g1, . . . , gn)

T at x1, . . . , xn is unique, and that there exists a nonnegative definite matrix

Γ, such that
∫ b
a g′′(x)2 dx = gTΓg.]

END OF PAPER

Part III, Paper 210


