MATHEMATICAL TRIPOS Part III

Thursday, 1 June, 2017 1:30 pm to 3:30 pm

PAPER 210

TOPICS IN STATISTICAL THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Let X_1, X_2, \ldots, X_n $(n \ge 2)$ be independent and identically distributed random variables with density function f.

 $\mathbf{2}$

Define the univariate kernel density estimator \hat{f}_h , with kernel K and bandwidth h. Show that

$$\mathbb{E}\{\hat{f}_h(x)\} = (K_h * f)(x),$$

where (g * f) denotes the convolution between g and f, and K_h is a function which you should specify.

Let the kernel be $K(z) = 1_{\{|z| \leq 1/2\}}$. Suppose that f is twice differentiable with bounded second derivative. Show that, for all $n \geq 2$, h > 0 and $x \in \mathbb{R}$,

$$\left|\mathbb{E}\{\hat{f}_h(x)\} - f(x)\right| \leq \frac{h^2}{24} \sup_{z \in \mathbb{R}} |f''(z)|.$$

Show that, for t > 0,

$$\mathbb{P}\Big[\left|\hat{f}_h(x) - \mathbb{E}\{\hat{f}_h(x)\}\right| \ge t\Big] \le 2\exp\Big(-2nh^2t^2\Big).$$

By integrating this bound, deduce that, for all $n \ge 2$, h > 0 and $x \in \mathbb{R}$, we have

$$\operatorname{Var}\{\hat{f}_h(x)\} \leqslant \frac{1 + \log 2}{2nh^2}.$$

 $\mathbf{2}$

Let (X, Y) be a random pair taking values in $\mathbb{R}^d \times \{0, 1\}$. Let $\eta(x) := \mathbb{P}(Y = 1 | X = x)$, and let P_X denote the marginal distribution of X. Define the *Bayes classifier* C^{Bayes} and find its risk $\mathbb{P}\{C^{\text{Bayes}}(X) \neq Y\}$.

Now let $(X_1, U_1), \ldots, (X_n, U_n)$ be independent pairs, with $X_i \sim P_X$, $U_i \sim U[0, 1]$, with X_i and U_i independent, for $i = 1, \ldots, n$. Let $Y_i := \mathbb{1}_{\{U_i \leq \eta(X_i)\}}$. Show that the pair (X_1, Y_1) has the same joint distribution as (X, Y).

For $k \in \{1, \ldots, n\}$, define the k-nearest neighbour classifier, denoted by \hat{C}_n^{knn} , with training data $(X_1, Y_1), \ldots, (X_n, Y_n)$.

Consider the case k = 1. Given $x \in \mathbb{R}^d$, let $Y'_i = Y'_i(x) := \mathbb{1}_{\{U_i \leq \eta(x)\}}$, and let $(X_{(1)}(x), U_{(1)}(x)), \ldots, (X_{(n)}(x), U_{(n)}(x))$ denote a reordering of the pairs $(X_1, U_1), \ldots, (X_n, U_n)$, such that

$$|X_{(1)}(x) - x|| \leq ||X_{(2)}(x) - x|| \leq \ldots \leq ||X_{(n)}(x) - x||.$$

Let \tilde{C}_n^{1nn} denote the 1-nearest neighbour classifier trained with the pairs $(X_1, Y'_1), \ldots, (X_n, Y'_n)$. Show that, for each $x \in \mathbb{R}^d$,

$$\mathbb{P}\{\tilde{C}_{n}^{1nn}(x) \neq \hat{C}_{n}^{1nn}(x)\} = \mathbb{E}\{|\eta(X_{(1)}(x)) - \eta(x)|\}.$$

Write

$$L(C) := \mathbb{P}\{C(X) \neq Y | (X_1, Y_1, U_1), \dots, (X_n, Y_n, U_n)\}.$$

Deduce that

$$\lim_{n \to \infty} \mathbb{E}\{L(\hat{C}_n^{1nn})\} = \lim_{n \to \infty} \mathbb{E}\{L(\tilde{C}_n^{1nn})\} = \mathbb{E}[2\eta(X)\{1 - \eta(X)\}].$$

[You may use the fact that $\mathbb{E}\{|\eta(X_{(1)}(X)) - \eta(X)|\} \to 0 \text{ as } n \to \infty \text{ without proof.}\}$

Deduce further that

$$\mathbb{P}\{C^{\text{Bayes}}(X) \neq Y\} \leqslant \lim_{n \to \infty} \mathbb{E}\{L(\hat{C}_n^{1nn})\} \leqslant 2\mathbb{P}\{C^{\text{Bayes}}(X) \neq Y\}.$$

3

Let P, Q be two probability measures on a measurable space $(\mathcal{X}, \mathcal{A})$, and let ν be a σ -finite measure on $(\mathcal{X}, \mathcal{A})$. Suppose that P and Q are mutually absolutely continuous with respect to ν , and dominated by ν . Define the *Kullback-Leibler* KL(P,Q), *Total Variation* TV(P,Q) and *Hellinger* h(P,Q) distances between P and Q. Show that

4

$$TV(P,Q) \leq h(P,Q) \leq \sqrt{KL(P,Q)}.$$

[*Hint:* You may use the fact that $\log(1+x) \leq x$ for x > -1 without proof.]

State and prove Le Cam's two points lemma.

Let X_1, \ldots, X_n be an independent and identically distributed sample from $N(\mu, \sigma^2)$ where σ is a known constant. Show that there exists c > 0 such that

$$\sup_{\mu \in \mathbb{R}} \mathbb{E} |\tilde{\mu} - \mu| \ge \frac{c}{\sqrt{n}},$$

for any estimator $\tilde{\mu}$.

 $\mathbf{4}$

Consider a fixed design homoscedastic regression model

$$Y_i = m(x_i) + \sigma \epsilon_i$$
, for $i = 1, 2, \ldots, n$,

5

where $a < x_1 < \ldots < x_n < b$ and ϵ_i are independent and identically distributed with $\mathbb{E}(\epsilon_i) = 0$ and $\operatorname{Var}(\epsilon_i) = 1$.

Define a *cubic spline* on [a, b] with knots at x_1, \ldots, x_n . When is a cubic spline a *natural cubic spline*? Define the *natural cubic spline interpolant* to $\mathbf{g} = (g_1, \ldots, g_n)^T$ at x_1, \ldots, x_n .

Let g denote the natural cubic spline interpolant to $\mathbf{g} = (g_1, \ldots, g_n)^T$ at x_1, \ldots, x_n . Show that for any twice continuously differentiable function \tilde{g} on [a, b] satisfying $\tilde{g}(x_i) = g_i$, for $i = 1, \ldots, n$, we have

$$\int_a^b g''(x)^2 \, dx \leqslant \int_a^b \tilde{g}''(x)^2 \, dx,$$

with equality if and only if $\tilde{g} = g$.

Deduce that, for each $\lambda \in (0, \infty)$, there exists a unique minimiser \hat{g}_{λ} , which you should specify, of

$$S_{\lambda}(\tilde{g}) := \sum_{i=1}^{n} \{Y_i - \tilde{g}(x_i)\}^2 + \lambda \int_a^b \tilde{g}''(x)^2 \, dx$$

over $\tilde{g} \in S_2[a, b]$, the set of twice continuously differentiable functions on [a, b].

[In this question you may use the fact that the natural cubic spline interpolant to $(g_1, \ldots, g_n)^T$ at x_1, \ldots, x_n is unique, and that there exists a nonnegative definite matrix Γ , such that $\int_a^b g''(x)^2 dx = \mathbf{g}^T \Gamma \mathbf{g}$.]

END OF PAPER

Part III, Paper 210