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1

(a) Let Z be a random variable with distribution belonging to an exponential dispersion
family with natural parameter θ and dispersion φ. Derive the expression of the
expected values E[Z] and the variance Var(Z) as functions of θ and φ.

(b) Let Y be a negative binomial random variable with density function

fY (y; r, λ) =
Γ(y + r)

y!Γ(r)

( λ

r + λ

)y( r

r + λ

)r

, y ∈ {0, 1, 2, . . .},

with r > 0 a known parameter. Show that Y belongs to an exponential dispersion
family and identify the natural parameter and the dispersion parameter. Using the
expressions derived in part (a), compute the mean and the variance of Y .

The administrators of a fishing reservoir are investigating if the daily number of
fishes caught by their customers is changing over time. They imported in R the data from
the most recent year about the number of fishes caught by each client (nfishes) and the
day they visited the reservoir (day, ranging from 1 to 365). They fitted the following
model:

> library(MASS)

> fish.model<-glm.nb(nfishes~day)

> summary(fish.model)

##

## Call:

## glm.nb(formula = nfishes ~ day, init.theta = 195525.8785, link = log)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -5.6444 -1.4817 0.3818 1.3630 4.4604

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 2.778e+00 1.605e-02 173.12 <2e-16 ***

## day -3.169e-03 8.857e-05 -35.79 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for Negative Binomial(195525.9) family taken to be 1)

##

## Null deviance: 8868.0 on 1299 degrees of freedom

## Residual deviance: 7544.3 on 1298 degrees of freedom

## AIC: 11808

##

## Number of Fisher Scoring iterations: 1

Part III, Paper 206



3

(c) Write down the algebraic form of the fitted model and the estimates of the parameters.
If the assumptions of the model are valid, what can you conclude about the change
in the number of fishes caught over time?

(d) The administrators are worried that some of the visitors came to the reservoir only to
keep company to their friends who were fishing, while not really trying to catch any
fish themselves. Indeed the number of zeros in the data was much larger than would
be expected from the fitted model. Propose a new model to address this problem.

(e) Write down the likelihood of this new model.

(f) Describe how this model can be fitted with an EM algorithm, specifying the expres-
sions of the expectation and maximization steps for this specific model (you can
assume r known).
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A company is investigating the probability that users of their online store make a
purchase. This probability may depend on the price of the product and on the layout
of the website. They collected data about individual users making a purchase or not
(purchase, coded as 1 if the user made the purchase, 0 else), the price of the product
they were considering (price) and the layout of the website (layout, a factor with levels
“A”, “B” and “C” to indicate the three possible layouts). Consider the following (edited)
R output.

> model1<-glm(purchase~price+layout,family="binomial")

> model2<-glm(purchase~price,family="binomial")

> anova(model1,test="Chisq")

## Analysis of Deviance Table

##

## Model: binomial, link: logit

##

## Response: purchase

##

## Df Deviance Resid. Df Resid. Dev Pr(>Chi)

## NULL 119 148.263

## price ? ? 118 101.920 9.93e-12

## layout ? ? ? 97.571 0.1136

> summary(model2)

##

## Call:

## glm(formula = purchase ~ price, family = "binomial")

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.6689 -0.6456 -0.3200 0.6891 2.4352

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 5.16258 1.13031 4.567 4.94e-06 ***

## price -0.08207 0.01595 -5.147 2.65e-07 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for binomial family taken to be 1)

(a) Write down the algebraic form of the models fitted in model1 and model2. Derive the
expression of the deviance for the two models.
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(b) Determine the value of the five numbers that have been substituted by question
marks in the Analysis of Deviance Table. Which model is preferable? Describe the
hypothesis test that has been carried out to reach this conclusion.

(c) Write down the estimates and 95% confidence intervals for the parameters of the
chosen model (recall that the 0.975 quantile of a standard normal distribution is
Z0.025 = 1.96). What can you conclude about the relationship between layout, price
and the probability of purchase? What is the predicted probability of purchase for
a product of price 100 with layout “B”?

(d) A third model is fitted with the commands

> model3<-glm(purchase~price,family = "quasibinomial")

> summary(model3)

##

## Call:

## glm(formula = purchase ~ price, family = "quasibinomial")

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.6689 -0.6456 -0.3200 0.6891 2.4352

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.16258 1.08921 4.740 6.03e-06 ***

## price -0.08207 0.01537 -5.341 4.55e-07 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Describe the model being fitted as model3 and how its parameters are estimated.
Is this an improvement with respect to model2?
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(a) Define the space of natural cubic splines on the set of knots X1 < · · · < XK and
compute its degrees of freedom.

Consider the model
Yi = m(Xi) + ǫi, for i = 1, . . . , n,

where ǫ1, . . . , ǫn are independent N(0, σ2) random variables.

(b) Describe how the unknown regression function m can be estimated by regression
splines, using a cubic natural splines basis on the knots X ′

1
< · · · < X ′

K , and find
the expression of the estimator. Discuss the role played by the number and the
positions of the knots and possible strategies to select both.

(c) Describe how the unknown regression functionm can be estimated by cubic smoothing
splines for a fixed value of the smoothing parameter λ and find the expression of
the estimator.

Researchers are investigating the relationship between the number of prescriptions in a
year (npres), age (age) and the white blood cell counts (wbc) in patients. They fit the
following model:

> library(mgcv)

> model1<-gam(npres~s(age,bs="cr")+s(wbc,bs="cr"))

> plot(model1)

(d) Write down the algebraic form of the fitted model. Looking at the estimated regression
functions in Fig.1, comment on how the number of prescription is related to age and
white blood cell count. Suggest how this model can be improved and write down
the R commands to fit the new model.

The researchers later realized that this dataset has been generated by putting together the
information coming from four different doctors. They then decide to use a factor (doctor,
taking values 1,2,3 and 4) to indicate which doctor treated each patient in the dataset and
to fit the new model

> model2<-gamm(npres~s(age,bs="cr")+s(wbc,bs="cr")+ random=list(doctor=~age))

(e) Write down the algebraic form of model2 and explain why the researchers fitted this
new model.
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Figure 1: Estimated regression functions for model1.
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Data have been collected to study the speed of growth of blowfly larvae. The size
of the larvae (size, in mm) and the hours since hatching (hours) have been imported in
R. After hatching, larvae have been randomly assigned to one of four different incubators
and this is denoted in R with a factor incubator with levels A,B, C and D. The following
analysis has been carried out in R.

> library(lme4)

> fly.model<-lmer(size~hours+(0+hours|incubator))

> summary(fly.model)

## Linear mixed model fit by REML [’lmerMod’]

## Formula: size ~ hours + (0 + hours | incubator)

##

## REML criterion at convergence: 14041.1

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.3551 -0.6053 0.1053 0.7817 1.9734

##

## Random effects:

## Groups Name Variance Std.Dev.

## incubator hours 0.00642 0.08013

## Residual 374.64823 19.35583

## Number of obs: 1600, groups: incubator, 4

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 24.32646 0.97143 25.04

## hours 0.70005 0.04093 17.10

##

## Correlation of Fixed Effects:

## (Intr)

## hours -0.178

(a) Write down the algebraic form of the fitted model and the estimates of the parameters.
Explain why it may be sensible to model the effect of the incubator as random and
why a random intercept is not needed in the model. What is the best prediction for
the size of a larva after 10 hours from hatching in a new incubator (not present in
the original study)?

(b) Derive the expression of the likelihood ratio test statistics to test if the random effect
is needed in the model. Explain why it is not possible to approximate its distribution
with a χ2 distribution in this case and describe an alternative procedure to carry
out the test.

(c) State the definition of the AIC and derive its expression for fly.model.

Part III, Paper 206



9

(d) Let us assume now that, before hatching, blowfly eggs have been collected from three
different locations and these locations have been recorded in the location factor.
Modify the model to take into account the variability in size due to the different
locations and write down the R code to fit this new model.

(e) An entomologist questioned the linear relationship between the size and the hours
after hatching. Consider the following R commands.

> library(mgcv)

> fly.model2<-gamm(size~s(hours,bs="cr"), random=list(incubator=~0+hours))

Describe the model fitted in fly.model2 and explain which figure can be plotted in
R to investigate if it is reasonable to assume a linear relationship between the size
and the hours after hatching.
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(a) Let Y1, . . . , Yn be a sample from a weakly stationary process with mean µ and
autocovariance function γ(h), h = 0, 1, . . .. Show that the sample mean is an
unbiased estimator for µ and compute the expression for its variance.

(b) In the same setting of part (a), assume now that µ = 0 and is known. Write down
the expression of the sample autocovariance function in this case and compute its
expected value.

(c) Define a zero-mean autoregressive process of order 1 and derive the expression for its
autocovariance and autocorrelation functions when the process is causal.

(d) The R vector temperature contains a time series of daily average temperatures for
two months. Consider the following R code and output:

> library(forecast)

> plot(temperature,xlab="day")

> acf(temperature)

> model_temp<-auto.arima(temperature,seasonal = FALSE, stationary = TRUE)

> model_temp

## Series: temperature

## ARIMA(0,0,1) with non-zero mean

##

## Coefficients:

## ma1 mean

## 0.6727 15.0133

## s.e. 0.1148 0.4505

##

## sigma^2 estimated as 4.634: log likelihood=-132.61

## AIC=271.22 AICc=271.64 BIC=277.55

Write down the algebraic form of the model that has been selected by the auto.arima
function and the estimates for the parameters. Is the choice of the options seasonal
= FALSE and stationary = TRUE justified? You can find the plot of the time series
and its the sample autocorrelation function in Fig.1.

(e) Based on the selected model, what is the expression of the predictor for the temper-
ature one week in the future? What is its expected prediction error? Compare this
with the expected prediction error for the naive predictor: which one is better?
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Figure 1: Time series of daily average temperature (left) and its sample autocorrelation
function (right).
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(a) Consider the Gaussian semivariogram model γ : R → R,

γ(t) =

{

τ2 + σ2(1− exp(−φ2t2)) for t > 0
0 else

Show that γ(t) defines a second-order stationary process and derive the expression
of the corresponding covariogram C(t). Find out the nugget, the sill and the range
for this model.

(b) Let Zs1
, . . . , Zsn

be generated from a Gaussian process with zero mean and covari-
ogram C(t). Derive the expression of the best linear unbiased predictor for the value
of the field Zs0

in a new location s0 and of a 95% prediction interval for Zs0
(you

can denote with qα the 1−α quantile of a standard normal distribution and you do
not need to write down the expression of C(t) here).

A maritime agency collected depth data from 52 points in a navigable channel and they are
interested in producing an accurate map of the depth in the whole channel for navigation
purpose. Consider the following R code and output, together with the graphics in Fig. 1
(the semivariogram model Gau corresponds to the Gaussian semivariogram defined in part
(a))

> spplot(depth_data,main=’depth’,xlab="x",ylab="y")

> smvg <- variogram(depth ~ 1, width=0.1, data=depth_data)

> gauss.model<-fit.variogram(smvg, vgm(10, "Gau", 2, 1))

> plot(smvg,gauss.model,main="smvg",ylim=c(0,10))

> smvg2 <- variogram(depth ~ y, width=0.1, data=depth_data)

> plot(smvg2,gauss.model2,main="smvg2",ylim=c(0,0.8))

> gauss.model2

## model psill range

## 1 Nug 0.0000000 0.000000

## 2 Gau 0.4726257 1.112235

> gauss.gstat <- gstat(formula = depth ~ y, data = depth_data, model=gauss.model2)

> s0<-data.frame(x=0,y=0,y=0)

> coordinates(s0)<-c("x","y")

> gauss.trend<- predict(gauss.gstat,newdata = s0 ,BLUE=TRUE)

> gauss.trend

## coordinates var1.pred var1.var

## 1 (0, 0) 20.13793 0.09456496

> s1<-data.frame(x=0,y=1,y=1)

> coordinates(s1)<-c("x","y")

> gauss.trend1<- predict(gauss.gstat,newdata = s1 ,BLUE=TRUE)

> gauss.trend1

## coordinates var1.pred var1.var

## 1 (0, 1) 22.08399 0.06097459
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(c) Comment on the binned semivariogram in svgm and explain why it is needed to fit
the new model in svgm2.

(d) Write down the algebraic form of the model fitted in gauss.gstat and the estimates
of the parameters.

(e) Describe the procedure used to estimate jointly the parameters of the drift term and
the spatial dependence.
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Figure 1: Top left: Binned semivariogram and fitted semivariogram model for smvg. Top
right: Binned semivariogram and fitted semivariogram model for smvg2. Bottom left:
Observed depth data. Bottom right: Kriging prediction for the depth field.
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right: Binned semivariogram and fitted semivariogram model for smvg2. Bottom left:
Observed depth data. Bottom right: Kriging prediction for the depth field.
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