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Given an input space X , what does it mean for k to be a positive definite kernel?
We will henceforth refer to a positive definite kernel as simply a kernel for brevity, and all
kernels will be on the input space X .

What is a reproducing kernel Hilbert space (RKHS)? [You need not define what a
Hilbert space is.]

Show that if k1, . . . , kp are kernels, then k =
∑p

j=1 kj is also a kernel.

Let the RKHS H associated with a kernel k have norm denoted by ‖ · ‖H. Let
c : Rn×X n×R

n → R be a loss function, Y ∈ R
n a vector of responses and x1, . . . , xn ∈ X

a collection of inputs. Let K ∈ R
n×n be the kernel matrix with entries Kij = k(xi, xj)

and let λ > 0. Prove that f̂ minimises

Q1(f) = c(Y, x1, . . . , xn, f(x1), . . . , f(xn)) + λ‖f‖2H
over f ∈ H if and only if f̂(·) = ∑n

i=1 α̂ik(·, xi) and α̂ = (α̂1, . . . , α̂n)
T ∈ R

n minimises

M(α) = c(Y, x1, . . . , xn,Kα) + λαTKα

over α ∈ R
n.

The final part of the question uses the following facts which you need not prove.
Suppose k =

∑p
j=1 kj where k1, . . . , kp are kernels with associated RKHS’s H1, . . . ,Hp

having corresponding norms ‖ · ‖H1
, . . . , ‖ · ‖Hp

. Then the RKHS H associated with k
satisfies

H =

{ p
∑

j=1

fj : fj ∈ Hj for all j = 1, . . . , p

}

with squared norm

‖f‖2H = inf

{ p
∑

j=1

‖fj‖2Hj
: f =

p
∑

j=1

fj, fj ∈ Hj for all j

}

.

It can be shown that the infimum is achieved uniquely, so given f ∈ H there exists a
unique (f1, . . . , fp) ∈ H1 × · · · × Hp such that

∑p
j=1 fj = f and ‖f‖2H =

∑p
j=1 ‖fj‖2Hj

.

Suppose now that (f̂1, . . . , f̂p) minimises

Q2(f1, . . . , fp) = c

(

Y, x1, . . . , xn,

p
∑

j=1

fj(x1), . . . ,

p
∑

j=1

fj(xn)

)

+ λ

p
∑

j=1

‖fj‖2Hj

over (f1, . . . , fp) ∈ H1 × · · · × Hp. Show that then Q2(f̂1, . . . , f̂p) = Q1(f̂) where

f̂ =
∑p

j=1 f̂j.

Show furthermore that f̂ minimises Q1. Finally prove that f̂j(·) =
∑n

i=1 α̂ikj(·, xi)
for all j, where α̂ ∈ R

n minimises M .

[Throughout your answer to this question, you may use properties of RKHS’s derived
or stated in lectures, without proof.]
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Let Y ∈ R
n be a vector of responses and X ∈ R

n×p a matrix of predictors. Suppose
that the columns of X have been centred and scaled to have ℓ2-norm

√
n, and that Y is

also centred. Consider the linear model (after centring),

Y = Xβ0 + ε− ε̄1,

where 1 is an n-vector of 1’s and ε̄ = 1T ε/n. Let S = {j : β0
j 6= 0} and s = |S|. Define

the Lasso estimator β̂ of β0 with regularisation parameter λ > 0 (here and throughout we
suppress the dependence of the Lasso solution on λ).

What does it mean for a random variable W to be sub-Gaussian with parameter
σ? Suppose that ε has independent mean-zero sub-Gaussian components with common
parameter σ > 0. Prove that when λ = 2σA

√

log(p)/n with A > 0, the event

Ω = {2‖XT ε‖∞/n 6 λ}

has probability at least 1− 2p−(A2/2−1).

Write down the KKT conditions for the Lasso. Let Ŝ = {j : β̂j 6= 0} and set ŝ = |Ŝ|.
Show that on the event Ω, for any non-empty subset B of Ŝ, we have

1

n
sgn(β̂B)

TXT
BX(β0 − β̂) >

λ|B|
2

. (∗)

State a sufficient condition based on X and S such that on Ω, we have

1

n
‖X(β0 − β̂)‖22 6

16λ2s

φ2
(∗∗)

where φ2 > 0.

Let κ2m be the maximum eigenvalue of XT
MXM/n over all M ⊂ {1, . . . , p} with

|M | = m. Let
m∗ = min{m > 1 : m > 64κ2ms/φ2},

with m∗ = ∞ if there does not exist any m satisfying the condition defining the set above.
Suppose that (∗∗) holds on Ω. Prove that on Ω, we have ŝ < m∗. [Hint: First try to
obtain an upper bound on the LHS of (∗) involving κ|B|].

By considering the minimality of m∗, show furthermore that on Ω, we have
ŝ 6 64κ2m∗s/φ2 .
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Suppose we have null hypotheses H1, . . . ,Hm and associated p-values p1, . . . , pm.
What is the family-wise error rate (FWER)? What is the false discovery rate (FDR)?

Describe the closed testing procedure and state a result concerning its FWER.

Suppose I0 is the set of indices of true null hypotheses and m0 = |I0|. In all that
follows we will assume that pi, i ∈ I0 are independent and independent of {pi : i /∈ I0}.
Furthermore, we will assume that with probability 1, the p-values p1, . . . , pm are distinct.
Let p(1), . . . , p(m) be the order statistics of the p-values, so (i) is the index of the ith
smallest p-value. Describe the Benjamini–Hochberg procedure and prove that it controls
the FDR at a given level α.

For any non-empty I ⊆ {1, . . . ,m}, let p(i,I), i = 1, . . . , |I| be the order statistics of
the p-values {pi : i ∈ I}, so for example (1, I) gives the index of the smallest p-value in
{pi : i ∈ I}. Show that

P(min
i

p(i,I0)/i 6 α/|I0|) 6 α

for all α ∈ [0, 1]. [Hint: Consider the Benjamini–Hochberg procedure in the setting where
Ic0 = ∅.]

Consider the procedure that rejects H(i) if there exists j > i with

p(j) 6
α

m− j + 1
.

Show that this procedure controls the FWER at level α. You may use the fact (which you
need not prove) that given i

if there exists j > i with p(j) 6
α

m− j + 1
,

then min
k

p(k,I)/k 6 α/|I| for all I such that (i) ∈ I. (∗)

[Hint: Consider a closed testing procedure.]
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What does it mean for a distribution to satisfy the global Markov property with
respect to a DAG G? What does it mean for two DAGs to be Markov equivalent? State
a result relating Markov equivalence to the structure of DAGs. What does it mean for a
distribution to be faithful to a DAG G?

Describe, in detail, the population version of the PC algorithm applied to a
distribution P . Prove that if P is faithful to a DAG G0, then the output of the PC
algorithm will identify the Markov equivalence class of G0. [You need not prove the
existence of topological orderings.]

Suppose now that Z ∈ R
4 has a distribution P that is faithful to a DAG G0. The

only independencies or conditional independencies satisfied by the components of Z are
given below:

Z2 ⊥⊥ Z4

Z1 ⊥⊥ Z3 | (Z2, Z4).

Find the DAG G0, briefly justifying your answer.

[In no part of your answer to this question do you need to explain what a graph is
or define any graph terminology such as d-separation or topological ordering.]
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Let (xi, Yi) ∈ X × {−1, 1}, i = 1, . . . , n and let k : X × X → R be a positive
definite kernel. Let K ∈ R

n×n be the kernel matrix so Kij = k(xi, xj). Write down the
optimisation problem solved by the support vector machine in terms of the intercept µ ∈ R,
parameter α ∈ R

n, tuning parameter λ > 0, K and the data. Let (µ̂, α̂) ∈ R×R
n minimise

the support vector machine objective. Write down the predicted response corresponding
to an input vector x ∈ X .

Now define the subdifferential ∂f(x) of a convex function f : Rn → R at x ∈ R
n.

Suppose that h : R → R is convex and given a vector c ∈ R
n and b ∈ R, let

f(x) = h(cTx+ b). Show that f is convex and that

∂f(x) = c ∂h(u) = {cv : v ∈ ∂h(u)}

where u = cTx+ b. [Hint: First show that if v ∈ ∂h(u) then cv ∈ ∂f(x). For the converse,
it may help to consider the orthogonal projection P = ccT /‖c‖22.]

Assume that K is invertible and let Ki denote the ith column of K. Prove
that if Yi(K

T
i α̂ + µ̂) > 1 then α̂i = 0. [Hint: It may help to use the fact that

max(u, 0) = (|u|+ u)/2.]

Discuss very briefly the computational implications of the result above. Will there
be much of a computational benefit when there are many points for which Yi disagrees
with the corresponding prediction? Briefly justify your answer.

[You may use standard results concerning subdifferentials and convex functions given
in lectures, without proof.]
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Let Y ∈ R
n be a vector of responses and X ∈ R

n×p a matrix of predictors. Consider
a normal linear model Y = Xβ0 + ε where ε ∼ Nn(0, σ

2I). Define the debiased Lasso
estimator b̂ in terms of an approximate inverse Θ̂ and a Lasso estimate β̂ of β0.

For j = 1, . . . , p, set

γ̂(j) = argminγ∈Rp−1{‖Xj −X−jγ‖22/(2n) + λj‖γ‖1},
τ̂2j = ‖Xj −X−j γ̂

(j)‖22/n+ λj‖γ̂(j)‖1,

where λj > 0, j = 1, . . . , p are tuning parameters. Give, with detailed justification, a
construction of the approximate inverse Θ̂ such that we have

√
n(b̂− β0) = W +∆

where

W |X ∼ Np(0, σ
2Ω̂),

‖∆‖∞ 6
√
n‖β0 − β̂‖1 max

j

λj

τ̂2j
,

and W, Ω̂ and ∆ should all be specified. [You need not derive KKT conditions for the
Lasso but should state them clearly if you use them.]

Based on this, write down an expression for an approximate (1−α)-level confidence
interval for β0

j in terms of b̂, σ2, γ̂(j) and τ̂2j .

Let s = |{j : β0
j 6= 0}|. Give a random design for X and conditions such that

asymptotically as n → ∞, there exist λj , tuning parameter λ for the Lasso estimate β̂,
and constant A with

P(‖∆‖∞ > As log(p)/
√
n) → 0.

Your conditions should allow for p and s to grow with n. [You need not prove that your
conditions imply the above limiting result.]

END OF PAPER

Part III, Paper 205


