MATHEMATICAL TRIPOS Part III

Monday, 5 June, 2017 1:30 pm to 4:30 pm

PAPER 205

MODERN STATISTICAL METHODS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Given an input space \mathcal{X} , what does it mean for k to be a *positive definite kernel*? We will henceforth refer to a positive definite kernel as simply a kernel for brevity, and all kernels will be on the input space \mathcal{X} .

What is a *reproducing kernel Hilbert space* (RKHS)? [You need not define what a Hilbert space is.]

Show that if k_1, \ldots, k_p are kernels, then $k = \sum_{j=1}^p k_j$ is also a kernel.

Let the RKHS \mathcal{H} associated with a kernel k have norm denoted by $\|\cdot\|_{\mathcal{H}}$. Let $c: \mathbb{R}^n \times \mathcal{X}^n \times \mathbb{R}^n \to \mathbb{R}$ be a loss function, $Y \in \mathbb{R}^n$ a vector of responses and $x_1, \ldots, x_n \in \mathcal{X}$ a collection of inputs. Let $K \in \mathbb{R}^{n \times n}$ be the kernel matrix with entries $K_{ij} = k(x_i, x_j)$ and let $\lambda > 0$. Prove that \hat{f} minimises

$$Q_1(f) = c(Y, x_1, \dots, x_n, f(x_1), \dots, f(x_n)) + \lambda ||f||_{\mathcal{H}}^2$$

over $f \in \mathcal{H}$ if and only if $\hat{f}(\cdot) = \sum_{i=1}^{n} \hat{\alpha}_i k(\cdot, x_i)$ and $\hat{\alpha} = (\hat{\alpha}_1, \dots, \hat{\alpha}_n)^T \in \mathbb{R}^n$ minimises

$$M(\alpha) = c(Y, x_1, \dots, x_n, K\alpha) + \lambda \alpha^T K \alpha$$

over $\alpha \in \mathbb{R}^n$.

The final part of the question uses the following facts which you need not prove. Suppose $k = \sum_{j=1}^{p} k_j$ where k_1, \ldots, k_p are kernels with associated RKHS's $\mathcal{H}_1, \ldots, \mathcal{H}_p$ having corresponding norms $\|\cdot\|_{\mathcal{H}_1}, \ldots, \|\cdot\|_{\mathcal{H}_p}$. Then the RKHS \mathcal{H} associated with k satisfies

$$\mathcal{H} = \left\{ \sum_{j=1}^{p} f_j : f_j \in \mathcal{H}_j \text{ for all } j = 1, \dots, p \right\}$$

with squared norm

$$||f||_{\mathcal{H}}^2 = \inf \bigg\{ \sum_{j=1}^p ||f_j||_{\mathcal{H}_j}^2 : f = \sum_{j=1}^p f_j, \ f_j \in \mathcal{H}_j \text{ for all } j \bigg\}.$$

It can be shown that the infimum is achieved uniquely, so given $f \in \mathcal{H}$ there exists a unique $(f_1, \ldots, f_p) \in \mathcal{H}_1 \times \cdots \times \mathcal{H}_p$ such that $\sum_{j=1}^p f_j = f$ and $||f||_{\mathcal{H}}^2 = \sum_{j=1}^p ||f_j||_{\mathcal{H}_j}^2$.

Suppose now that $(\hat{f}_1, \ldots, \hat{f}_p)$ minimises

$$Q_2(f_1, \dots, f_p) = c\left(Y, x_1, \dots, x_n, \sum_{j=1}^p f_j(x_1), \dots, \sum_{j=1}^p f_j(x_n)\right) + \lambda \sum_{j=1}^p \|f_j\|_{\mathcal{H}_j}^2$$

over $(f_1, \ldots, f_p) \in \mathcal{H}_1 \times \cdots \times \mathcal{H}_p$. Show that then $Q_2(\hat{f}_1, \ldots, \hat{f}_p) = Q_1(\hat{f})$ where $\hat{f} = \sum_{j=1}^p \hat{f}_j$.

Show furthermore that \hat{f} minimises Q_1 . Finally prove that $\hat{f}_j(\cdot) = \sum_{i=1}^n \hat{\alpha}_i k_j(\cdot, x_i)$ for all j, where $\hat{\alpha} \in \mathbb{R}^n$ minimises M.

[Throughout your answer to this question, you may use properties of RKHS's derived or stated in lectures, without proof.]

Part III, Paper 205

 $\mathbf{2}$

Let $Y \in \mathbb{R}^n$ be a vector of responses and $X \in \mathbb{R}^{n \times p}$ a matrix of predictors. Suppose that the columns of X have been centred and scaled to have ℓ_2 -norm \sqrt{n} , and that Y is also centred. Consider the linear model (after centring),

$$Y = X\beta^0 + \varepsilon - \bar{\varepsilon}\mathbf{1},$$

where **1** is an *n*-vector of 1's and $\bar{\varepsilon} = \mathbf{1}^T \varepsilon / n$. Let $S = \{j : \beta_j^0 \neq 0\}$ and s = |S|. Define the Lasso estimator $\hat{\beta}$ of β^0 with regularisation parameter $\lambda > 0$ (here and throughout we suppress the dependence of the Lasso solution on λ).

What does it mean for a random variable W to be sub-Gaussian with parameter σ ? Suppose that ε has independent mean-zero sub-Gaussian components with common parameter $\sigma > 0$. Prove that when $\lambda = 2\sigma A \sqrt{\log(p)/n}$ with A > 0, the event

$$\Omega = \{2 \| X^T \varepsilon \|_{\infty} / n \leqslant \lambda \}$$

has probability at least $1 - 2p^{-(A^2/2-1)}$.

Write down the KKT conditions for the Lasso. Let $\hat{S} = \{j : \hat{\beta}_j \neq 0\}$ and set $\hat{s} = |\hat{S}|$. Show that on the event Ω , for any non-empty subset B of \hat{S} , we have

$$\frac{1}{n}\operatorname{sgn}(\hat{\beta}_B)^T X_B^T X(\beta^0 - \hat{\beta}) \ge \frac{\lambda|B|}{2}.$$
(*)

State a sufficient condition based on X and S such that on Ω , we have

$$\frac{1}{n} \|X(\beta^0 - \hat{\beta})\|_2^2 \leqslant \frac{16\lambda^2 s}{\phi^2} \tag{**}$$

where $\phi^2 > 0$.

Let κ_m^2 be the maximum eigenvalue of $X_M^T X_M / n$ over all $M \subset \{1, \ldots, p\}$ with |M| = m. Let

$$m^* = \min\{m \ge 1 : m > 64\kappa_m^2 s/\phi^2\},\$$

with $m^* = \infty$ if there does not exist any *m* satisfying the condition defining the set above. Suppose that (**) holds on Ω . Prove that on Ω , we have $\hat{s} < m^*$. [Hint: First try to obtain an upper bound on the LHS of (*) involving $\kappa_{|B|}$].

By considering the minimality of $m^*,$ show furthermore that on $\Omega,$ we have $\hat{s}\leqslant 64\kappa_{m^*}^2s/\phi^2$.

3

Suppose we have null hypotheses H_1, \ldots, H_m and associated *p*-values p_1, \ldots, p_m . What is the *family-wise error rate* (FWER)? What is the *false discovery rate* (FDR)?

4

Describe the *closed testing procedure* and state a result concerning its FWER.

Suppose I_0 is the set of indices of true null hypotheses and $m_0 = |I_0|$. In all that follows we will assume that p_i , $i \in I_0$ are independent and independent of $\{p_i : i \notin I_0\}$. Furthermore, we will assume that with probability 1, the *p*-values p_1, \ldots, p_m are distinct. Let $p_{(1)}, \ldots, p_{(m)}$ be the order statistics of the *p*-values, so (*i*) is the index of the *i*th smallest *p*-value. Describe the *Benjamini–Hochberg procedure* and prove that it controls the FDR at a given level α .

For any non-empty $I \subseteq \{1, \ldots, m\}$, let $p_{(i,I)}$, $i = 1, \ldots, |I|$ be the order statistics of the *p*-values $\{p_i : i \in I\}$, so for example (1, I) gives the index of the smallest *p*-value in $\{p_i : i \in I\}$. Show that

$$\mathbb{P}(\min p_{(i,I_0)}/i \leq \alpha/|I_0|) \leq \alpha$$

for all $\alpha \in [0,1]$. [Hint: Consider the Benjamini–Hochberg procedure in the setting where $I_0^c = \emptyset$.]

Consider the procedure that rejects $H_{(i)}$ if there exists $j \ge i$ with

$$p_{(j)} \leqslant \frac{\alpha}{m-j+1}.$$

Show that this procedure controls the FWER at level α . You may use the fact (which you need not prove) that given i

if there exists
$$j \ge i$$
 with $p_{(j)} \le \frac{\alpha}{m-j+1}$,
then $\min p_{(k,I)}/k \le \alpha/|I|$ for all I such that $(i) \in I$. (*)

[*Hint: Consider a closed testing procedure.*]

 $\mathbf{4}$

What does it mean for a distribution to satisfy the global Markov property with respect to a DAG \mathcal{G} ? What does it mean for two DAGs to be Markov equivalent? State a result relating Markov equivalence to the structure of DAGs. What does it mean for a distribution to be faithful to a DAG \mathcal{G} ?

Describe, in detail, the population version of the *PC algorithm* applied to a distribution *P*. Prove that if *P* is faithful to a DAG \mathcal{G}^0 , then the output of the PC algorithm will identify the Markov equivalence class of \mathcal{G}^0 . [You need not prove the existence of topological orderings.]

Suppose now that $Z \in \mathbb{R}^4$ has a distribution P that is faithful to a DAG \mathcal{G}^0 . The only independencies or conditional independencies satisfied by the components of Z are given below:

$$Z_2 \perp\!\!\!\perp Z_4$$
$$Z_1 \perp\!\!\!\perp Z_3 \mid (Z_2, Z_4).$$

Find the DAG \mathcal{G}^0 , briefly justifying your answer.

[In no part of your answer to this question do you need to explain what a graph is or define any graph terminology such as d-separation or topological ordering.]

 $\mathbf{5}$

Let $(x_i, Y_i) \in \mathcal{X} \times \{-1, 1\}$, i = 1, ..., n and let $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel. Let $K \in \mathbb{R}^{n \times n}$ be the kernel matrix so $K_{ij} = k(x_i, x_j)$. Write down the optimisation problem solved by the *support vector machine* in terms of the intercept $\mu \in \mathbb{R}$, parameter $\alpha \in \mathbb{R}^n$, tuning parameter $\lambda > 0$, K and the data. Let $(\hat{\mu}, \hat{\alpha}) \in \mathbb{R} \times \mathbb{R}^n$ minimise the support vector machine objective. Write down the predicted response corresponding to an input vector $x \in \mathcal{X}$.

Now define the subdifferential $\partial f(x)$ of a convex function $f : \mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$.

Suppose that $h : \mathbb{R} \to \mathbb{R}$ is convex and given a vector $c \in \mathbb{R}^n$ and $b \in \mathbb{R}$, let $f(x) = h(c^T x + b)$. Show that f is convex and that

$$\partial f(x) = c \,\partial h(u) = \{cv : v \in \partial h(u)\}$$

where $u = c^T x + b$. [Hint: First show that if $v \in \partial h(u)$ then $cv \in \partial f(x)$. For the converse, it may help to consider the orthogonal projection $P = cc^T / \|c\|_2^2$.]

Assume that K is invertible and let K_i denote the *i*th column of K. Prove that if $Y_i(K_i^T \hat{\alpha} + \hat{\mu}) > 1$ then $\hat{\alpha}_i = 0$. [*Hint: It may help to use the fact that* $\max(u, 0) = (|u| + u)/2$.]

Discuss very briefly the computational implications of the result above. Will there be much of a computational benefit when there are many points for which Y_i disagrees with the corresponding prediction? Briefly justify your answer.

[You may use standard results concerning subdifferentials and convex functions given in lectures, without proof.]

6

Let $Y \in \mathbb{R}^n$ be a vector of responses and $X \in \mathbb{R}^{n \times p}$ a matrix of predictors. Consider a normal linear model $Y = X\beta^0 + \varepsilon$ where $\varepsilon \sim N_n(0, \sigma^2 I)$. Define the *debiased Lasso* estimator \hat{b} in terms of an approximate inverse $\hat{\Theta}$ and a Lasso estimate $\hat{\beta}$ of β^0 .

7

For
$$j = 1, ..., p$$
, set
 $\hat{\gamma}^{(j)} = \operatorname{argmin}_{\gamma \in \mathbb{R}^{p-1}} \{ \|X_j - X_{-j}\gamma\|_2^2/(2n) + \lambda_j \|\gamma\|_1 \},$
 $\hat{\tau}_j^2 = \|X_j - X_{-j}\hat{\gamma}^{(j)}\|_2^2/n + \lambda_j \|\hat{\gamma}^{(j)}\|_1,$

where $\lambda_j > 0, j = 1, \dots, p$ are tuning parameters. Give, with detailed justification, a construction of the approximate inverse $\hat{\Theta}$ such that we have

$$\sqrt{n}(\hat{b} - \beta^0) = W + \Delta$$

where

$$W|X \sim N_p(0, \sigma^2 \hat{\Omega}),$$
$$\|\Delta\|_{\infty} \leqslant \sqrt{n} \|\beta^0 - \hat{\beta}\|_1 \max_j \frac{\lambda_j}{\hat{\tau}_j^2},$$

and $W, \hat{\Omega}$ and Δ should all be specified. [You need not derive KKT conditions for the Lasso but should state them clearly if you use them.]

Based on this, write down an expression for an approximate $(1 - \alpha)$ -level confidence interval for β_i^0 in terms of \hat{b} , σ^2 , $\hat{\gamma}^{(j)}$ and $\hat{\tau}_i^2$.

Let $s = |\{j : \beta_j^0 \neq 0\}|$. Give a random design for X and conditions such that asymptotically as $n \to \infty$, there exist λ_j , tuning parameter λ for the Lasso estimate $\hat{\beta}$, and constant A with

$$\mathbb{P}(\|\Delta\|_{\infty} > As \log(p) / \sqrt{n}) \to 0.$$

Your conditions should allow for p and s to grow with n. [You need not prove that your conditions imply the above limiting result.]

END OF PAPER