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(a) Give the definition of a compact H-hull A and its half-plane capacity hcap(A).

(b) Prove that hcap(A) = limy→∞ yEiy[Im(Bτ )] where B is a complex Brownian motion
and τ is its first exit time from H \ A. Deduce that hcap(A) > 0. [You may assume
that hcap(A) is real-valued.]

(c) Establish the following properties of hcap:

(i) hcap(A+ x) = hcap(A) for all x ∈ R,

(ii) hcap(rA) = r2hcap(A) for all r > 0,

(iii) hcap(A) 6 hcap(B) for compact H-hulls A,B with A ⊆ B.

(d) Compute hcap([0, i]), hcap(H ∩ D), and prove that hcap(A) 6 diam(A)2 for any
compact H-hull A.
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(a) Explain what it means for a family of compact H-hulls to be:

(i) Non-decreasing,

(ii) Locally growing,

(iii) Parameterized by half-plane capacity.

(b) Prove or disprove: if (An) is a sequence of compact H-hulls and hcap(An) → 0 as
n → ∞, then diam(An) → 0 as n → ∞. [You may use results from lectures provided
you state them clearly.]

(c) Define the Dirichlet inner product and prove that it is conformally invariant.

(d) Define the space H1
0 (D). Show that if U ⊆ D is open and Hsupp = H1

0 (U) and Hharm

denotes those H1
0 (D) functions which are harmonic in U , then Hsupp and Hharm are

orthogonal subspaces of H1
0 (D). [You do not need to prove that Hsupp ⊕Hharm spans

H1
0 (D).]
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(a) State the Koebe-1/4 theorem.

(b) Suppose that D, D̃ are domains in C, z ∈ D, z̃ ∈ D̃, and f : D → D̃ is a conformal
transformation with f(z) = z̃. Show that

d̃

4d
6 |f ′(z)| 6 4d̃

d

where d = dist(z, ∂D) and d̃ = dist(z̃, ∂D̃).

(c) Show that SLEκ is space-filling for κ > 8. [You may assume without proof that

Mt = |g′t(z)|(8−κ+ρ)ρ/(4κ)Υ
ρ(ρ+8)/(8κ)
t S

−ρ/κ
t

is a continuous local martingale for each ρ > 0 where Υt = Im(gt(z))/|g′t(z)|,
St = sin(arg(gt(z) − Ut)), and (gt) is the Loewner flow driven by Ut =

√
κBt for

B a standard Brownian motion.]
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(a) Explain what it means for SLE to satisfy the restriction property.

(b) Show that a simple SLE curve γ in H from 0 to ∞ satifsfies restriction if there exists
α > 0 such that

P[γ[0,∞) ∩A = ∅] = (g′A(0))
α

for all compact H-hulls A with 0 /∈ A and gA the unique conformal transformation
H \A → H with gA(z)− z → 0 as z → ∞.

(c) Prove that SLEκ for κ 6 4 does not intersect the domain boundary. [You may use
results from lectures about Bessel processes provided you state them clearly.]

(d) Show for each z ∈ H that arg(gt(z)− Ut) is a continuous martingale for SLE4.
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