MATHEMATICAL TRIPOS Part III

Friday, 9 June, 2017 1:30 pm to 3:30 pm

PAPER 203

SCHRAMM-LOEWNER EVOLUTIONS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

- 1
- (a) Give the definition of a compact \mathbb{H} -hull A and its half-plane capacity hcap(A).
- (b) Prove that $hcap(A) = \lim_{y\to\infty} y\mathbb{E}_{iy}[Im(B_{\tau})]$ where B is a complex Brownian motion and τ is its first exit time from $\mathbb{H} \setminus A$. Deduce that $hcap(A) \ge 0$. [You may assume that hcap(A) is real-valued.]
- (c) Establish the following properties of hcap:
 - (i) hcap(A + x) = hcap(A) for all $x \in \mathbb{R}$,
 - (ii) $hcap(rA) = r^2hcap(A)$ for all $r \ge 0$,
 - (iii) $hcap(A) \leq hcap(B)$ for compact \mathbb{H} -hulls A, B with $A \subseteq B$.
- (d) Compute hcap([0, i]), hcap($\mathbb{H} \cap \mathbb{D}$), and prove that hcap(A) $\leq \text{diam}(A)^2$ for any compact \mathbb{H} -hull A.

$\mathbf{2}$

- (a) Explain what it means for a family of compact H-hulls to be:
 - (i) Non-decreasing,
 - (ii) Locally growing,
 - (iii) Parameterized by half-plane capacity.
- (b) Prove or disprove: if (A_n) is a sequence of compact \mathbb{H} -hulls and hcap $(A_n) \to 0$ as $n \to \infty$, then diam $(A_n) \to 0$ as $n \to \infty$. [You may use results from lectures provided you state them clearly.]
- (c) Define the Dirichlet inner product and prove that it is conformally invariant.
- (d) Define the space $H_0^1(D)$. Show that if $U \subseteq D$ is open and $H_{supp} = H_0^1(U)$ and H_{harm} denotes those $H_0^1(D)$ functions which are harmonic in U, then H_{supp} and H_{harm} are orthogonal subspaces of $H_0^1(D)$. [You do not need to prove that $H_{supp} \oplus H_{harm}$ spans $H_0^1(D)$.]

UNIVERSITY OF

3

- (a) State the Koebe-1/4 theorem.
- (b) Suppose that D, \widetilde{D} are domains in $\mathbb{C}, z \in D, \widetilde{z} \in \widetilde{D}$, and $f: D \to \widetilde{D}$ is a conformal transformation with $f(z) = \widetilde{z}$. Show that

$$\frac{\widetilde{d}}{4d} \leqslant |f'(z)| \leqslant \frac{4\widetilde{d}}{d}$$

where $d = \operatorname{dist}(z, \partial D)$ and $\tilde{d} = \operatorname{dist}(\tilde{z}, \partial \tilde{D})$.

(c) Show that SLE_{κ} is space-filling for $\kappa > 8$. [You may assume without proof that

$$M_t = |g_t'(z)|^{(8-\kappa+\rho)\rho/(4\kappa)} \Upsilon_t^{\rho(\rho+8)/(8\kappa)} S_t^{-\rho/\kappa}$$

is a continuous local martingale for each $\rho > 0$ where $\Upsilon_t = \text{Im}(g_t(z))/|g'_t(z)|$, $S_t = \sin(\arg(g_t(z) - U_t))$, and (g_t) is the Loewner flow driven by $U_t = \sqrt{\kappa}B_t$ for B a standard Brownian motion.]

 $\mathbf{4}$

- (a) Explain what it means for SLE to satisfy the restriction property.
- (b) Show that a simple SLE curve γ in \mathbb{H} from 0 to ∞ satisfies restriction if there exists $\alpha > 0$ such that

$$\mathbb{P}[\gamma[0,\infty) \cap A = \emptyset] = (g'_A(0))^{\alpha}$$

for all compact \mathbb{H} -hulls A with $0 \notin \overline{A}$ and g_A the unique conformal transformation $\mathbb{H} \setminus A \to \mathbb{H}$ with $g_A(z) - z \to 0$ as $z \to \infty$.

- (c) Prove that SLE_{κ} for $\kappa \leq 4$ does not intersect the domain boundary. [You may use results from lectures about Bessel processes provided you state them clearly.]
- (d) Show for each $z \in \mathbb{H}$ that $\arg(q_t(z) U_t)$ is a continuous martingale for SLE₄.

END OF PAPER

Part III, Paper 203