MATHEMATICAL TRIPOS Part III

Friday, 2 June, 2017 1:30 pm to 4:30 pm

PAPER 201

ADVANCED PROBABILITY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(a) What does it mean to say that a random process $(M_n)_{n\geq 0}$ is a martingale?

 $\mathbf{2}$

(b) State Doob's L^2 inequality.

(c) Let $(X_n : n \in \mathbb{N})$ be a sequence of independent, identically distributed random variables of finite mean m and finite variance σ^2 . Set $S_0 = 0$ and $S_n = X_1 + \cdots + X_n$ for $n \in \mathbb{N}$. Show that, for all $n \in \mathbb{N}$,

$$\mathbb{E}\left(\sup_{k\leqslant n}|S_k-mk|^2\right)\leqslant 4\sigma^2 n.$$

(d) Consider the linear interpolation $(S_t)_{t \ge 0}$ given by

$$S_{n+t} = (1-t)S_n + tS_{n+1}, \quad n \in \mathbb{Z}^+, \quad t \in [0,1].$$

 Set

$$S_t^{(N)} = N^{-1} S_{Nt}$$

and write μ_N for the distribution of $(S_t^{(N)})_{t \ge 0}$ on $C([0, \infty), \mathbb{R})$. Show that the sequence $(\mu_N : N \in \mathbb{N})$ converges weakly on $C([0, \infty), \mathbb{R})$ and determine its limit.

$\mathbf{2}$

(a) Let $(M_n)_{n\geq 0}$ be an integrable discrete-time random process, adapted to a filtration $(\mathcal{F}_n)_{n\geq 0}$. Show that the following conditions are equivalent:

- (i) $(M_n)_{n \ge 0}$ is a martingale,
- (ii) $\mathbb{E}(M_T) = \mathbb{E}(M_0)$ for all bounded stopping times T.

(b) Let $(X_n : n \in \mathbb{N})$ be a sequence of independent random variables, each taking the value -1 with probability 6/7 and taking the value 2 otherwise. Set $S_0 = 0$ and $S_n = X_1 + \cdots + X_n$ for $n \ge 1$. Fix $m \in \mathbb{N}$ and set

$$T = T_m = \inf\{n \ge 1 : |S_n| \ge m\}.$$

Show that $\mathbb{E}(2^{S_T}) = 1$.

(c) Find an equation relating $\mathbb{E}(T)$ and $\mathbb{E}(S_T)$.

(d) Deduce from the equations found in (b) and (c) that $\mathbb{E}(T_m)/m \to 7/4$ as $m \to \infty$.

3

- (a) State the L^1 martingale convergence theorem.
- (b) State the L^p martingale convergence theorem, for $p \in (1, \infty)$.
- (c) Let f be a function [0, 1]. Suppose that f satisfies the Lipschitz condition

$$|f(x) - f(y)| \leq K|x - y| \quad \text{for all} \quad x, y \in [0, 1]$$

for some constant $K < \infty$. Show that there exists a bounded measurable function g on [0,1] such that

$$f(x) = f(0) + \int_0^x g(t)dt$$
 for all $x \in [0, 1]$.

(d) Given a continuous function f on [0,1], define, for $n \ge 0$ and $\lambda < \infty$,

$$I_n(\lambda) = \{k \in \{0, 1, \dots, 2^n - 1\} : |f((k+1)2^{-n}) - f(k2^{-n})| \ge \lambda 2^{-n}\}$$

and set

$$V_n(f,\lambda) = \sum_{k \in I_n(\lambda)} |f((k+1)2^{-n}) - f(k2^{-n})|.$$

Suppose that f satisfies

$$\sup_{n \ge 0} V_n(f, \lambda) \to 0 \quad \text{as} \quad \lambda \to \infty.$$

Show that there exists a function g on [0, 1], integrable with respect to Lebesgue measure, such that

$$f(x) = f(0) + \int_0^x g(t)dt$$
 for all $x \in [0, 1]$.

 $\mathbf{4}$

(a) Let $(\xi_t)_{t\in D}$ be a random process, indexed by the set

$$D = \{k2^{-n} : n \in \mathbb{N}, k = 0, 1, \dots, 2^n\}.$$

4

Suppose that, for some $p \in (1, \infty)$ and some $\beta \in (1/p, 1]$, there is a constant $C < \infty$ such that

$$\|\xi_s - \xi_t\|_p \leqslant C|s - t|^\beta, \quad s, t \in D$$

where $\|.\|_p$ denotes the usual $L^p(\mathbb{P})$ -norm. Show that, for some range of $\alpha \in (0, 1]$, to be specified, the following series converges in $L^p(\mathbb{P})$

$$K_{\alpha} = 2 \sum_{n=0}^{\infty} 2^{n\alpha} \sup_{k \in \{0,1,\dots,2^n-1\}} |\xi_{(k+1)2^{-n}} - \xi_{k2^{-n}}|.$$

(b) Hence show that there is a continuous random process $(X_t)_{t \in [0,1]}$ such that $X_t = \xi_t$ almost surely, for all $t \in D$.

(c) Consider now the case where $(\xi_t)_{t\in D}$ is a zero-mean Gaussian process with $\mathbb{E}(\xi_s\xi_t) = \min\{s,t\}$ for all s,t. Show that the process $(X_t)_{t\in[0,1]}$ in (b) may be chosen to have paths which are Hölder continuous of every exponent $\alpha < 1/2$.

 $\mathbf{5}$

Let $B = (B_t)_{t \ge 0}$ be a three-dimensional Brownian motion starting from x. Let $r, R \in (0, \infty)$ with r < R.

(a) Suppose that $|x| \in (r, R)$. Show that

$$\mathbb{P}_x(|B| \text{ hits } r \text{ before } R) = (|x|^{-1} - R^{-1})/(r^{-1} - R^{-1}).$$

(b) Show that, for $|x| \in (r, \infty)$,

$$\mathbb{P}_x(|B_t| = r \text{ for some } t \ge 0) < 1.$$

(c) Show on the other hand that, for r > 0 and all x,

 $\mathbb{P}_x(|B_t + z| = r \text{ for some } t \ge 0 \text{ and some } z \in \mathbb{Z}^3) = 1.$

6

Let $(B_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R} , starting from 0. For $a \geq 0$, set

$$H_a = \inf\{t \ge 0 : B_t \ge a\}.$$

5

(a) Show that $H_a < \infty$ almost surely and, for all $u \ge 0$,

$$\mathbb{E}(e^{ua-u^2H_a/2}) = 1.$$

(b) Show that $T_a = H_a$ almost surely, for all $a \ge 0$, where

$$T_a = \inf\{t \ge 0 : B_t > a\}.$$

(c) Is it true that $\mathbb{P}(T_a = H_a \text{ for all } a \ge 0) = 1$? Justify your answer.

(d) Let $(W_t)_{t\geq 0}$ be a Brownian motion, starting from 0, independent of $(B_t)_{t\geq 0}$. Set

$$X_a = W_{T_a}, \quad a \ge 0.$$

Show that $(X_a)_{a \ge 0}$ is a Lévy process.

(e) Determine the characteristic exponent of $(X_a)_{a \ge 0}$.

[You may use without proof any result from the course, provided you state it clearly.]

END OF PAPER

Part III, Paper 201