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(a) What does it mean to say that a random process (Mn)n>0 is a martingale?

(b) State Doob’s L2 inequality.

(c) Let (Xn : n ∈ N) be a sequence of independent, identically distributed random
variables of finite mean m and finite variance σ2. Set S0 = 0 and Sn = X1 + · · ·+Xn for
n ∈ N. Show that, for all n ∈ N,

E

(

sup
k6n

|Sk −mk|2
)

6 4σ2n.

(d) Consider the linear interpolation (St)t>0 given by

Sn+t = (1− t)Sn + tSn+1, n ∈ Z
+, t ∈ [0, 1].

Set
S
(N)
t = N−1SNt

and write µN for the distribution of (S
(N)
t )t>0 on C([0,∞),R). Show that the sequence

(µN : N ∈ N) converges weakly on C([0,∞),R) and determine its limit.

2

(a) Let (Mn)n>0 be an integrable discrete-time random process, adapted to a
filtration (Fn)n>0. Show that the following conditions are equivalent:

(i) (Mn)n>0 is a martingale,

(ii) E(MT ) = E(M0) for all bounded stopping times T .

(b) Let (Xn : n ∈ N) be a sequence of independent random variables, each taking
the value −1 with probability 6/7 and taking the value 2 otherwise. Set S0 = 0 and
Sn = X1 + · · ·+Xn for n > 1. Fix m ∈ N and set

T = Tm = inf{n > 1 : |Sn| > m}.

Show that E(2ST ) = 1.

(c) Find an equation relating E(T ) and E(ST ).

(d) Deduce from the equations found in (b) and (c) that E(Tm)/m → 7/4 asm → ∞.
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(a) State the L1 martingale convergence theorem.

(b) State the Lp martingale convergence theorem, for p ∈ (1,∞).

(c) Let f be a function [0, 1]. Suppose that f satisfies the Lipschitz condition

|f(x)− f(y)| 6 K|x− y| for all x, y ∈ [0, 1]

for some constant K < ∞. Show that there exists a bounded measurable function g on
[0, 1] such that

f(x) = f(0) +

∫ x

0
g(t)dt for all x ∈ [0, 1].

(d) Given a continuous function f on [0, 1], define, for n > 0 and λ < ∞,

In(λ) = {k ∈ {0, 1, . . . , 2n − 1} : |f((k + 1)2−n)− f(k2−n)| > λ2−n}

and set
Vn(f, λ) =

∑

k∈In(λ)

|f((k + 1)2−n)− f(k2−n)|.

Suppose that f satisfies
sup
n>0

Vn(f, λ) → 0 as λ → ∞.

Show that there exists a function g on [0, 1], integrable with respect to Lebesgue measure,
such that

f(x) = f(0) +

∫ x

0
g(t)dt for all x ∈ [0, 1].
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(a) Let (ξt)t∈D be a random process, indexed by the set

D = {k2−n : n ∈ N, k = 0, 1, . . . , 2n}.

Suppose that, for some p ∈ (1,∞) and some β ∈ (1/p, 1], there is a constant C < ∞ such
that

‖ξs − ξt‖p 6 C|s− t|β, s, t ∈ D

where ‖.‖p denotes the usual Lp(P)-norm. Show that, for some range of α ∈ (0, 1], to be
specified, the following series converges in Lp(P)

Kα = 2
∞
∑

n=0

2nα sup
k∈{0,1,...,2n−1}

|ξ(k+1)2−n − ξk2−n |.

(b) Hence show that there is a continuous random process (Xt)t∈[0,1] such that
Xt = ξt almost surely, for all t ∈ D.

(c) Consider now the case where (ξt)t∈D is a zero-mean Gaussian process with
E(ξsξt) = min{s, t} for all s, t. Show that the process (Xt)t∈[0,1] in (b) may be chosen to
have paths which are Hölder continuous of every exponent α < 1/2.

5

Let B = (Bt)t>0 be a three-dimensional Brownian motion starting from x. Let
r,R ∈ (0,∞) with r < R.

(a) Suppose that |x| ∈ (r,R). Show that

Px(|B| hits r before R) = (|x|−1 −R−1)/(r−1 −R−1).

(b) Show that, for |x| ∈ (r,∞),

Px(|Bt| = r for some t > 0) < 1.

(c) Show on the other hand that, for r > 0 and all x,

Px(|Bt + z| = r for some t > 0 and some z ∈ Z
3) = 1.
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Let (Bt)t>0 be a Brownian motion in R, starting from 0. For a > 0, set

Ha = inf{t > 0 : Bt > a}.

(a) Show that Ha < ∞ almost surely and, for all u > 0,

E(eua−u2Ha/2) = 1.

(b) Show that Ta = Ha almost surely, for all a > 0, where

Ta = inf{t > 0 : Bt > a}.

(c) Is it true that P(Ta = Ha for all a > 0) = 1? Justify your answer.

(d) Let (Wt)t>0 be a Brownian motion, starting from 0, independent of (Bt)t>0. Set

Xa = WTa
, a > 0.

Show that (Xa)a>0 is a Lévy process.

(e) Determine the characteristic exponent of (Xa)a>0.

[You may use without proof any result from the course, provided you state it clearly.]
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